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Dynamics of ocean jets over topography

Abstract

Alternating jets seen in the oceans are often transient in nature as they possess spatio-

temporal variability. Ocean bathymetry is believed to be one of the primary causes for

the jet variability. In this thesis, the dynamics of alternating jets and mesoscale eddies is

studied in the presence of a zonally sloped topography in a baroclinic quasi-geostrophic

model, which is forced with an imposed vertical velocity shear. It is observed that the

jets tilt from the zonal direction and drift meridionally. The jets tend to align with the

barotropic potential vorticity isolines and drift speeds match well with the phase speeds of

linear Rossby waves. Thus, the linear dynamics controls the jet drift. Also, the tilted jets

are coupled to the imposed shear and are able to gain energy directly from the imposed

shear. On the other hand, eddies remove energy from the jets; hence, eddies act against

the jets. The results are further confirmed by analysing the mean-flow and eddy energy

budgets.

These results are limited to continuously forced dissipative systems. In weak dissi-

pation regimes, in addition to the tilted jets, purely zonal large-scale modes are observed.

The zonal modes gain energy from eddies and the tilted jets through nonlinear interac-

tions. The results suggest that alternating jet patterns in the oceans can also form due

to interactions among eddies and various large-scale modes. The mechanism is different

from the classical arguments, in which only mesoscale eddies force the jets. Also, a direct

energy transfer from the imposed shear to jets is not possible in the model of stationary

zonally symmetric jets. Further, it is found that energy transfer to the jets via Reynolds

stress work is higher in the layer having a positive meridional gradient in the background

potential vorticity. This is qualitatively explained by simple reasoning based on Rossby

wave group velocity.

iv



This dissertation is dedicated to my family.

v



Acknowledgments

Firstly, I would like to thank my advisor Pavel Berloff, without whom I could not have

completed this thesis. His continuous guidance and encouragement helped me immensely

during my PhD. I am grateful to him for reading through my derivations and helping me

with physical interpretations of the results.

I would also like to thank Darryl Holm and Igor Shevchenko for their comments and

suggestions on my work during my early-stage and late-stage reviews. Igor Shevchenko

also helped me with the numerical simulations when I was in the initial state of my

PhD. I am also grateful to my PhD examiners David Marshall and Xuesong Wu for their

comments and suggestions on this thesis.

I would like to extend my gratitude to Andrew Thompson, Jai Sukhatme, Navid

Constantinou, William Young, Paula Cessi, Freddy Bouchet, Peter Haynes, Rupert Klein,

Stephen Griffies, Michael Haigh, Erwin Luesink, Laura Cope, Dhruv Balwada, Takaya

Uchida, Mary O’Donnell and Josephine Park for useful conversations that I had with

them over the course of my PhD. Numerous reviewers have given important feedback

that has helped me in improving this thesis and the related research articles.

I am grateful to the HPC team at Imperial College and Andrew Thomas for their

help with computer clusters. I also want to acknowledge the financial support from

the President’s Scholarship and Mathematics of Planet Earth CDT at Imperial College

London.

Finally, I would like to thank my family, especially my parents, and friends, who

have always cared for me and motivated me.

vi



List of figures

1.1 Snapshot of geostrophic velocity anomaly (30th June) on the ocean surface
from satellite altimetry data in the North-West Pacific. The zonal velocity
is shown in colour (units are in m s−1). Alternating jet patterns can be
seen inside the green boxes. . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Adopted from Khatri and Berloff (2018a). Sketch of the model domain. A
uniform eastward background flow Ub is imposed in the upper layer. Hi, ρi
are the layer depth and density, respectively. ηT is the topographic height.
x axis is along the zonal direction and the meridional axis y points into the
sketch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Baroclinic growth rates (red curves) of the most unstable modes for differ-
ent magnitudes of Ub and Tx. For the rest of the parameters, values shown
in table 2.1 were used in the computations. Blue curves represent the
background PV gradients in the meridional direction in individual layers. 10

2.3 Imaginary (ωi) and real parts (ωr) of frequencies obtained from the dis-
persion relation (equation 2.3). kx and ky are the zonal and meridional
wavenumbers, respectively. Top panels are for the flat topography case
and bottom panels correspond to the zonally sloped topography case with
Tx = 1.4 × 10−12 m−1s−1. For the rest of the parameters, values shown in
table 2.1 were used. Colorbar units are in 10−7s−1. Note that the top and
bottom panels have the same colorbar shown between the panels. . . . . . 10

2.4 Snapshots of the streamfunction field, ψi (units are in m2s−1), in the top
(left panels) and bottom (right panels) layers at different times (top to bot-
tom: snapshots at 600, 1000, 1400 days) over a zonally sloped topography.
The simulation was run on a doubly periodic domain having 1024 × 512
grid points and the parameter values shown in table 2.1 were used. The
core of the numerical model used in this thesis has been developed by Dr
Pavel Berloff and his collaborators over the years. Topography was later
included in the numerical model as a part of the research work presented
in this thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

vii



3.1 Adopted from Khatri and Berloff (2018a). Jet flow patterns in the equi-
librium state; (a-f): Snapshots of the PV anomaly field in the top layer
(∇2ψ1 + S1(ψ2 − ψ1)) and bottom layer (∇2ψ2 + S2(ψ1 − ψ2)) from three
different simulations run with Tx = 0.83 × 10−12, 1.4 × 10−12 and 2.8 ×
10−12 m−1s−1, respectively (colorbar units are in s−1); (g,h): PV anomaly
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1
Introduction

On rapidly rotating planets, large-scale flows behave like quasi-two-dimensional flows, in

which vertical velocities are of much smaller magnitude than horizontal velocity magni-

tudes. In such scenarios, kinetic energy injected at small spatial scales cascades upscale

resulting in the formation of large-scale flows (Kraichnan, 1967; Charney, 1971). One of

the most common examples of this mechanism is the presence of zonally-banded struc-

tures commonly referred to as “alternating jets” in the atmospheres of Jupiter and Saturn

(Beebe et al., 1980; Gierasch et al., 1986; Read et al., 2009). In these atmospheres, the

energy released at small-scales by baroclinic instabilities and small-scale convection due

to internal heating is transferred to larger scales (see Young and Read, 2017) and this

upscale energy transfer leads to the formation of alternating jet patterns. Similar multiple

alternating jets have been witnessed in Earth’s oceans in satellite altimetry, float datasets

and eddy-resolving ocean general circulation models (Maximenko et al., 2005; Nakano and

Hasumi, 2005; Richards et al., 2006; Sokolov and Rintoul, 2007; Van Sebille et al., 2011;

Cravatte et al., 2012; Buckingham and Cornillon, 2013; Cravatte et al., 2017).

1.1 Formation of zonal jets

The two-dimensional turbulence theory applies to an isotropic turbulent field (Kraichnan,

1967), whereas the zonal jet formation results in a highly anisotropic field. The first

physical explanation of the jet formation was given by Rhines (1975). They argued that

the isotropic inverse cascade of energy is modified in the presence of Rossby waves, which

are present due to the rotation of the planet, and the energy is channelled into zonal

structures. Also, the meridional scale of the jets is set by the magnitudes of eddy energy

and β, which is the meridional gradient in the Coriolis parameter f (f = 2Ω sinφ, where
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Ω is the rotation rate of the planet and φ is the latitude). This scale is commonly known

as the ‘Rhines scale’ LR,

LR =

√
2U

β
, (1.1)

where U is the root-mean-square eddy velocity. The presence of alternating jets has

been confirmed in a variety of eddy-resolving numerical models (Williams, 1979; Panetta,

1993; Vallis and Maltrud, 1993; Cho and Polvani, 1996; Huang and Robinson, 1998, and

others) as well as in laboratory experiments (Read et al., 2004, 2007). It is seen that the

meridional width of the jets agrees well with Rhines scaling (Rhines, 1975; Maltrud and

Vallis, 1991; Vallis and Maltrud, 1993; Sukoriansky et al., 2007; Scott and Polvani, 2007;

Chemke and Kaspi, 2015a).

The main feature of the alternating jet structure is that eastward jets are sharper and

stronger than the westward return flows, which are relatively broader. The jets are forced

by mesoscale eddies, which grow via baroclinic instability and transfer momentum up-

gradient into the eastward jet cores (Panetta, 1993; Lee, 1997; Huang and Robinson, 1998;

Thompson and Young, 2007). Due to the presence of the strong zonal flow, zonal jets act

like partial barriers to meridional transport and the eddy diffusivity is significantly reduced

across strong jets (Srinivasan and Young, 2014; Kong and Jansen, 2017). These features

are well captured in stochastically forced, dissipative barotropic quasi-geostrophic (QG)

models (Maltrud and Vallis, 1991; Danilov and Gryanik, 2004; Danilov and Gurarie, 2004;

Suhas and Sukhatme, 2015) as well as in baroclinic QG models forced with a background

vertical shear (Panetta, 1993; Thompson and Young, 2007; Berloff et al., 2009b).

Although jet formation is seen in a variety of numerical models, ambiguities remain

about the importance of the vertical flow structure, and the interactions between the jets

and eddies. It has been suggested that energy can also be transferred upscale nonlocally to

zonal jets by interactions among barotropic and baroclinic modes (Thompson and Young,

2007; Berloff et al., 2009b; Berloff and Kamenkovich, 2013a,b). For example, Wordsworth

et al. (2008) studied jet dynamics in a differentially heated, rotating annulus experiment

and found evidence of nonlocal energy transfer from eddies to the jets. The stochastic

structural stability theory and cumulant expansion methods also show that jets can be

formed in the β-plane barotropic turbulence (Farrell and Ioannou, 2007; Marston et al.,

2008; Srinivasan and Young, 2012; Constantinou et al., 2014). These studies suggest that

zonal jets can emerge due to interactions between the mean zonal flow and eddies, even in

the absence of an inverse cascade. This mechanism is known as ‘zonostrophic instability’

(Srinivasan and Young, 2012). It has also been suggested that the jet formation can

be explained in terms of spatially inhomogeneous stirring of potential vorticity (PV) by

eddies. This process results in a ‘staircase’ structure in the meridional PV profile and the

zonal jets are generated at the PV interfaces (Baldwin et al., 2007; Dunkerton and Scott,
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2008; Dritschel and McIntyre, 2008). In the oceans, multiple alternating jets can also

be generated through other processes, e.g., instability of meridional boundary currents

(Hristova et al., 2008; Wang et al., 2012), secondary or modulational instability of Rossby

waves (Berloff, 2005b; Connaughton et al., 2010; Qiu et al., 2013), bottom topography

(Sinha and Richards, 1999).

1.2 Jets in the oceans

Multiple jets have been witnessed in Earth’s oceans (Maximenko et al., 2005; Sokolov and

Rintoul, 2007; Van Sebille et al., 2011). Oceanic jets are about 200-400 km wide in the

meridional direction and can extend up to two-three thousand km in the zonal direction

(see figure 1.1). There is a good agreement that oceanic jets are dynamically similar

to the zonal jets seen in planetary atmospheres and, at the leading order, oceanic jets

can be explained with QG dynamics on the β-plane (Kramer et al., 2006; Nadiga, 2006).

However, there are important differences between atmospheric and oceanic jets. Unlike

the extremely persistent jets in planetary atmospheres, jets in the oceans show temporal

and spatial variability (Thompson and Richards, 2011; Thompson and Sallée, 2012); thus,

they are sometimes referred to as ‘striations’ or ‘latent jets’. The jets in the oceans are not

always zonal and can also drift meridionally, which has been observed in comprehensive

ocean models and observational datasets (Nakano and Hasumi, 2005; Van Sebille et al.,

2011; Stern et al., 2015; Chen et al., 2016).

Ocean bathymetry is one of the primary reasons for jet variability in the oceans. In

many places in the global ocean, transient jets steered by topography have been found

(Sokolov and Rintoul, 2007; Thompson, 2010; Thompson and Richards, 2011; Chen et al.,

2015). Spatially non-uniform PV gradients are created in the presence of nonuniform to-

pography and this affects the ocean circulation (Radko and Kamenkovich, 2017). Large-

scale flows can become barotropically unstable over topography (Tansley and Marshall,

2001; Poulin and Flierl, 2005). In addition, bottom topography affects the baroclinic

growth rates and stability of oceanic flows (Hart, 1975a,b; Benilov, 2001; Chen and Ka-

menkovich, 2013; Chen et al., 2015). In the presence of topography, cross-jet transport

properties are significantly affected. For example, Thompson (2010) studied jet dynam-

ics over a two-dimensional sinusoidal topography and found that eddy transport in the

meridional direction increases with increasing the topographic steepness because of the

generation of nonzonal mean flows (also see Tréguier and Panetta, 1994).

This thesis mainly concentrates on the drifting behaviour of multiple oceanic jets

over topography. Drifting jets can play an important role in ocean transport. It is seen

that spatially nonuniform PV gradients can result in asymmetric Reynolds stresses across

jet cores, which then make the jets drift (Thompson, 2010; Stern et al., 2015). For

example, over meridional ridges, jets propagate in the meridional direction because of off-
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Figure 1.1: Snapshot of geostrophic velocity anomaly (30th June) on the ocean surface from satellite altimetry
data in the North-West Pacific. The zonal velocity is shown in colour (units are in m s−1). Alternating jet
patterns can be seen inside the green boxes.

set nonlinear eddy forcing (Thompson and Richards, 2011; Chen et al., 2015). Even very

gentle topographic slopes can induce jet drift. Boland et al. (2012) studied the effects of

a zonally sloping topography on jet dynamics and found that jets drift meridionally and

tilt with respect to the zonal direction towards the tilted isolines of the mean barotropic

PV. They anticipate that the linear dynamics controls the jet drift, which is different from

the explanation that the nonlinear eddy forcing causes the jet drift. It is not completely

clear what controls the jet drift in different scenarios. The primary focus of this thesis to

understand the jet drift mechanism.

1.3 Thesis outline

In this thesis, we seek to explore the physical mechanism that controls the jet drift over

topographic slopes and investigate the impacts of the tilted, drifting jets on the overall

dynamics. Similar to Boland et al. (2012), we consider a simple topography that increases

linearly in the zonal direction and use the two-layer QG model forced with a uniform

background vertical shear in the study. The model details are described in chapter 2. In

agreement with Boland et al. (2012), tilted meridionally drifting jets are observed in our

numerical simulations.

In chapter 3, we analyse the role of nonlinear eddy forcing and linear stress terms,

which arise due to the tilted jets and the presence of sloping topography, in the time-

4



averaged dynamical PV balances. In order to separate eddies from the drifting jets, we

rewrite the governing equations in a non-stationary tilted frame of reference in which the

jets are purely zonal and stationary. This transformation makes it much easier to analyse

the interactions between the jets and eddies in the presence of topography. Also, the jet

drift speed becomes an explicit parameter in the new governing equations and this helps

in studying the jet drift mechanism. It is found that the linear stress terms dominate

in the time-mean PV budget and, for small slope magnitudes, the jet drift speeds are

in a good agreement with the phase speeds of linear Rossy waves. The linear stress

terms largely negate the effects of each other and the difference between the linear stress

terms is balanced by eddy forcing. The results show that the linear dynamics have major

control over the jet drift. It is further observed that the titled jets can be coupled to the

imposed background vertical shear via topography and this alters the energy exchange

rates between the jets and eddies.

In chapter 4, we derive the energy conservation equation in the titled frame of refer-

ence and compute energy exchanges between the jets and eddies in numerical simulations

run with different slope magnitudes. We show that the tilted jets are able to gain energy

directly from the imposed vertical shear and lose energy to eddies in the overall balance,

which is in contrast to the case of eddy-driven zonal jets. An explanation based on the

relative magnitudes of eddy vorticity and buoyancy fluxes is provided. Further, we com-

pute eddy heat and PV diffusivities as a function of the slope magnitude. The results

indicate that topography can significantly impact eddy-mean flow interactions and play

an important role in guiding nonlocal energy transfers between different spatial scales.

In chapter 5, principal component analysis is used to identify the dominant modes in

the numerical simulations. It is observed that, apart from the tilted jets, many large-scale

modes exist, and these large-scale modes can interact efficiently and exchange energy.

We analyse these interactions using two-dimensional kinetic energy spectra and discuss

implications of these interactions on oceanic jets. Further, linear stability analysis is

performed to study the impacts of the magnitudes of the eddy viscosity and bottom

friction parameters on these nonlinear interactions.

In chapter 6, the roles of eddy relative vorticity and buoyancy flux convergences,

which constitute the nonlinear eddy forcing term, in the maintenance of zonal jets are

studied. These two components of eddy forcing are the main factors which control the

vertical structure and strength of the jets in a system, and their relative magnitudes

determine if the jets gain or lose energy to eddies. Here, we perform layer-wise analyses

to assess the importance of the two factors in individual layers in systems forced with

either an eastward or a westward vertical shear. It is shown that eddy momentum fluxes

primarily force the jets in the layer that experiences a net positive meridional PV gradient

and an explanation based on Rossby wave group velocity is proposed for the same. The

thesis is concluded in chapter 7.
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2
Model Description

In this thesis, we use the standard two-layer quasi-geostrophic (QG) model, which com-

prises of two coupled isopycnal layers and solves for the evolution of the geostrophic flow

field. This is the simplest model that can support intrinsic baroclinic instability and the

model is widely used to study the dynamics of large-scale flows and eddies in the atmo-

sphere and oceans (e.g. see Holland, 1978; Haidvogel and Held, 1980; Panetta, 1993).

In the oceans, density isolines tilt in the meridional direction due to the equator-to-pole

temperature gradient and surface wind forcing, and this generates a vertical velocity shear

governed by thermal-wind balance (see chapter 2 in Vallis, 2017). This velocity shear is

generally baroclinically unstable and, consequently, mesoscale eddies grow by extracting

the available potential energy due to the vertical velocity shear. This mechanism can be

easily implemented in the two-layer QG model.

The large-scale flows in the atmosphere and oceans are largely in geostrophic bal-

ance, i.e., the dominant balance is between the Coriolis force and horizontal pressure

gradient forces. The QG theory, which is used to predict the evolution of the geostrophic

flow field in time, is based on the assumption that the rotation effects are important in

the dynamics (Charney, 1948). This condition is satisfied when the ratio of the advective

term to the Coriolis term in the momentum equations is smaller than one (see equation

5.3 in Vallis, 2017), i.e. Rossy number is small (Ro = U/fL << 1, where f is the Coriolis

parameter, and U and L are the velocity and length scales, respectively). The QG equa-

tions are derived by using asymptotic expansion and expanding the variables in powers

of small Rossby numbers in the momentum and continuity equations. Consequently, fast

motions like gravity waves are filtered out from the system and the resulting equations

only have a contribution from the geostrophic flow component. The full derivation of the

QG equations can be found in chapter 5 in Vallis (2017).
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2.1 Governing equations

We use the two-layer QG model on the β plane in the presence of bottom topography

and the topographic height increases linearly in the zonal direction (see figure 2.1). In

order to force the model, an eastward background flow Ub is imposed in the upper layer,

which creates a uniform velocity shear in the vertical direction. The governing equations

are (Vallis, 2017)

∂Πi

∂t
+ J(ψi − δi1Uby,Πi) = ν∇4ψi − δi2γ∇2ψi, (2.1)

where J(a, b) represents the Jacobian and t is time. Indices i = 1 and i = 2 correspond

to the top and bottom layers, respectively, and δij is the Kronecker delta. Πi represents

the layer-wise full potential vorticity (PV), which is given as

Πi = ∇2ψi + εiSi(ψ2 − ψ1) + (β + εiSiUb)y + δi2
fo
H2

ηT . (2.2)

Here, ε1 = −ε2 = 1. ψi and Si = f 2
o /g

′Hi (g′ = g(ρ2 − ρ1)/ρ1 is the reduced

gravity, where ρi is the layer density) represent the layer-wise velocity streamfunction

and stratification parameter, respectively. β is the meridional gradient in the Coriolis

parameter and fo is the Coriolis parameter at some reference latitude. Hi is the layer

thickness and ηT is the topographic height. ν and γ are eddy viscosity and bottom friction

parameters, respectively.

Figure 2.1: Adopted from Khatri and Berloff (2018a). Sketch of the model domain. A uniform eastward
background flow Ub is imposed in the upper layer. Hi, ρi are the layer depth and density, respectively. ηT is
the topographic height. x axis is along the zonal direction and the meridional axis y points into the sketch.

The values of the parameters used in the numerical simulations are given in table

2.1. The value of β corresponds to a reference latitude of 30◦ and the stratification

parameter values correspond to a baroclinic Rossby radius of 25 km, which is typical
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for the mid-latitudinal ocean (Chelton et al., 1998). The zonal slope magnitudes were

kept small to ensure that Tx is smaller than β in magnitude and the baroclinic growth

rates do not change significantly. This was necessary to maintain the computational

efficiency. The change in depth over the zonal extent of the domain is smaller than the

thickness of the lower layer (for the largest chosen slope, the change in depth is about 400

m). Also, the magnitude of the imposed background flow in the upper layer was chosen

such that the system is baroclinically unstable for the chosen values of β and stratification

parameters while maintaining the computational efficiency in the simulations. The details

are discussed in the next section where we use linear stability analysis to assess the impact

of the slope magnitude on the baroclinic growth rates. In numerical models, the eddy

viscosity term is used to parameterise unresolved sub-grid motions and dissipate enstrophy

at the grid scale. In this thesis, we mainly focus on motions having scales of greater than

100 km and the eddy viscosity term is used to parameterise the effects of motions at

scales of about 10 km. In ocean models, 10−7 s−1 is generally used for the bottom friction

coefficient. However, we chose relatively smaller values for the bottom drag coefficient such

that the developed jets are strong and clear (see Berloff et al., 2011, for a brief discussion

on the impacts of bottom friction on zonal jets). We ran a number of simulations to

assess the impacts of the magnitudes of the zonal slope and dissipation parameters while

keeping other parameters fixed. The results are discussed in chapters 3-5.

Parameter Value

Domain size Lx = 3600 km, Ly = 1800 km

Layer Depth H1 = 1 km, H2 = 3 km

Background flow Ub = 0.06 m s−1

Coriolis Parameter fo = 7.27× 10−5 s−1

Coriolis gradient β = 2× 10−11 m−1s−1

Stratification S1 = 1.2× 10−9 m−2, S2 = 0.4× 10−9 m−2

Baroclinic Rosby Radius Rd = 25 km

Topographic slope term Tx = fo
H2

∂ηT
∂x

= 0− 2.8× 10−12 m−1s−1

Eddy viscosity ν = 50− 200 m2s−1

Bottom friction γ = 1× 10−8 − 4× 10−8 s−1

Table 2.1: Parameter values used in the numerical simulations. We ran different simulations for a range
of magnitudes of Tx, ν and γ. Whenever not specified, Tx = 1.4 × 10−12 m−1s−1, ν = 100 m2s−1 and
γ = 2× 10−8 s−1 were used in those cases.

2.2 Baroclinic instability

In our model, mesoscale eddies grow by gaining energy from the imposed vertical velocity

shear, which is baroclinically unstable. Here, we perform a linear stability analysis and

compute the baroclinic growth rates as a function of the magnitudes of the background

8



flow in the upper layer and zonal slope. For this purpose, we derive the linear dispersion

relation by substituting ψi = ψ̃ie
i(kxx+kyy−ωt) in equation (2.1) and neglecting the nonlinear

terms. The final linearised equations can be represented in the following matrix form

ω(k2x + k2y + S1) + kx(β − Ub(k2x + k2y)) −S1ω + S1Ubkx

+iν(k4x + k4y)

−S2ω ω(k2x + k2y + S2)− kyTx + kx(β − UbS2)

+iν(k4x + k4y) + iγ(k2x + k2y)



ψ̃1

ψ̃2

 = 0,

(2.3)

where (kx, ky) represent the zonal and meridional wavenumbers, respectively, and ω is the

frequency. For nontrivial solutions, the determinant of the matrix vanishes and results in

a quadratic equation, which we solve for different wavenumber pairs (kx, ky).

The baroclinic growth rates (imaginary parts of the frequency solutions) of the

most unstable modes are plotted as a function of Ub for three different values of Tx in

figure 2.2. It is worth noting that the system becomes unstable for eastward and westward

background flows of magnitudes larger than about 0.05 m s−1 and 0.03 m s−1, respectively.

Hence, we chose Ub = 0.06 m s−1 in our simulations. Also, in order for the system to be

baroclinically unstable, meridional PV gradients in the upper and lower layers must change

sign in the vertical direction (Charney and Stern, 1962). This condition is satisfied in the

cases, which have positive growth rates, as the background PV gradients in the top and

bottom layers are of opposite signs. Note that, for the chosen zonal slope magnitudes, the

growth rates change slightly but the change is not significant (see Chen and Kamenkovich,

2013, for details). In order to maintain the computational efficiency and have similar

energy levels in the equilibrium state across different simulations, we preferred to use

quite small zonal slope magnitudes in the simulations. We further discuss this aspect

later in the thesis.

In figure 2.3, the real and imaginary parts of the frequency solutions are shown for a

flat bottom case (top panels) as well as for a sloped topography case (bottom panels). In

the flat bottom case, the growth rate maxima (ωi2) lie on the ky = 0 line while the maxima

shift to a nonzero meridional wavenumber in the presence of a zonal topographic slope.

Thus, over a flat bottom, the most unstable Fourier modes are meridionally oriented,

whereas the most unstable modes are slightly tilted from the meridional direction in

the sloped topography case (compare the top and bottom panels in figure 2.3b). These

Fourier modes correspond to mesoscale eddies, which grow via baroclinic instability and

are responsible for the formation of multiple jets. The real parts of the frequency solutions

represent the propagation of Rossby waves. Over a flat bottom, Rossby waves effectively

propagate in the zonal direction. On the other hand, the frequency contours rotate in the

case of sloped topography and this is especially clear in ωr2 contours. Here, the direction of
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Figure 2.2: Baroclinic growth rates (red curves) of the most unstable modes for different magnitudes of Ub
and Tx. For the rest of the parameters, values shown in table 2.1 were used in the computations. Blue curves
represent the background PV gradients in the meridional direction in individual layers.

Rossby wave propagation is determined by the combined effect of β and Tx. This affects

the orientation of multiple jets and we discuss this aspect in the next chapter.
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2.3 Numerical computations

In the numerical simulations, the second-order finite-difference method was used to dis-

cretise the governing equations and a flux-preserving numerical scheme called “Compact

accurately boundary adjusting high-resolution technique (CABARET)” was used to inte-

grate the solution in time. The main advantage of using CABARET is that the scheme

is weakly dissipative and low in dispersion; thus, it is very effective in simulating high

Reynolds number eddy-resolving flows (Karabasov et al., 2009; Karabasov and Goloviznin,
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2009). The scheme is also computationally very efficient. In the numerical simulations, a

rectangular domain having a grid resolution of about 7 km (512 × 256 grid points) was

used. The grid resolution is sufficient to resolve the baroclinic instability as the fastest

growing modes have zonal wavelengths of 2πRd, i.e. roughly 150 km. In the simulations,

periodic boundary conditions were used on both zonal and meridional boundaries. Nev-

ertheless, for the purpose of comparison and verification, we also ran channel simulations

and few simulations with 1024× 512 grid points. Note that the background flow Ub itself

satisfies the governing equations. Hence, the model was initialised from a perturbed state

and the perturbations grow via baroclinic instability.
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Figure 2.4: Snapshots of the streamfunction field, ψi (units are in m2s−1), in the top (left panels) and bottom
(right panels) layers at different times (top to bottom: snapshots at 600, 1000, 1400 days) over a zonally
sloped topography. The simulation was run on a doubly periodic domain having 1024 × 512 grid points and
the parameter values shown in table 2.1 were used. The core of the numerical model used in this thesis has
been developed by Dr Pavel Berloff and his collaborators over the years. Topography was later included in the
numerical model as a part of the research work presented in this thesis.

Snapshots of the streamfunction field in the top and bottom layers are shown in

figure 2.4. The system initially develops meridionally oriented structures, which are in

agreement with the linear baroclinic instability process (see figure 2.3). These meridional

patterns further become unstable and transfer energy upscale resulting in the formation of

alternating jets (see Berloff et al., 2009a, for details). These growing meridional patterns

are generally called eddies. It is seen that, in general, meridionally oriented eddies result

in anti-frictional Reynolds stresses or, in other words, the corresponding eddy momentum

fluxes are up-gradient (Holloway, 2010; Srinivasan and Young, 2014). Thus, eddies force

the large-scale zonal jets. We ran the simulations until the system reached a statistical

equilibrium state, in which energy input due to the imposed vertical shear balances the

energy loss by viscous dissipation and bottom friction. In the next chapters, we analyse

momentum and energy balances to understand the impacts of the sloped topography on

the dynamics of jets and eddies.
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3
Mechanism for Jet Drift

The contents of this chapter have been published in the research article titled “A mecha-

nism for jet drift over topography” in the Journal of Fluid Mechanics (Khatri and Berloff,

2018a).

Boland et al. (2012) first showed that the jets tend to tilt from the zonal direction

over a zonally sloped topography and drift in the meridional direction. However, it remains

unclear what causes the jet drift in this scenario. The main objective of this chapter is

to understand the physical mechanism that controls the jet drift. For this purpose, we

study the jet dynamics in the two-layer quasi-geostrophic (QG) numerical solutions run

with different zonal slope magnitudes. We compare the jet drift speeds with predictions

from the linear dispersion relation as well as examine the role of nonlinear eddy effects

in the maintenance of the jets. In particular, we assess the impacts of the time-mean

cross-jet profiles of eddy forcing, meridional eddy fluxes on the mean flow in the energy

equilibrium state in a non-stationary, tilted frame of reference propagating with the tilted

jets.

3.1 Jet dynamics in the equilibrium state

We first analyse the jet dynamics in the statistical equilibrium state. In figure 3.1, snap-

shots and Hovmöller diagram of the potential vorticity (PV) anomaly field are shown for

three simulations run with different zonal slope magnitudes (Tx = 0.83×10−12, 1.4×10−12

and 2.8× 10−12 m−1s−1 were used in the simulations). In this chapter, these simulations

are referred to as ‘small-slope’, ‘medium-slope’ and ‘large-slope’, respectively. In agree-

ment with Boland et al. (2012), the jets tilt from the zonal direction and propagate

meridionally. We observed that the tilt angle, as well as the drift speed, increases with

12



Figure 3.1: Adopted from Khatri and Berloff (2018a). Jet flow patterns in the equilibrium state; (a-f):
Snapshots of the PV anomaly field in the top layer (∇2ψ1 +S1(ψ2−ψ1)) and bottom layer (∇2ψ2 +S2(ψ1−
ψ2)) from three different simulations run with Tx = 0.83 × 10−12, 1.4 × 10−12 and 2.8 × 10−12 m−1s−1,
respectively (colorbar units are in s−1); (g,h): PV anomaly Hovmöller diagrams in the top and bottom layers
(a meridional cross-section of PV anomaly at the centre of the domain is plotted against time for the medium-
slope simulation); (i): Total energy time series in the three simulations (for reference, energy time series for a
flat bottom case Tx = 0 is shown). The jet tilt angles are 5.71◦, 7.13◦, 9.46◦ and southward drift speeds are
0.20, 0.48, 0.74 cm s−1, respectively.

increasing the slope magnitude. The jets tilt in response to the tilted PV isolines due

to the sloped topography (Boland et al., 2012). Over a flat bottom, the background PV

gradient due to the planetary vorticity is directed in the meridional direction only and

Rossby waves propagate in the east-west direction (see figure 2.3). As a result, alternating

jets are always zonal and parallel to the mean PV isolines. In the presence of a zonally

sloped topography, the zonal component of the PV gradient is nonzero and this affects the

Rossby wave propagation direction resulting in titled jets. For example, in a barotropic

model, the jet tilt angle can be estimated as tan−1(Tx
β

).

In the two-layer QG model, the dynamics are more complex and the jet tilt is

determined by the combined dynamics of both layers. Here, the background PV gradient

in the upper layer (∇[fo + (β + S1Ub)y]) is purely meridional, whereas the background

PV gradient in the lower layer (∇[fo + (β−S2Ub)y+Txx]) has both zonal and meridional

components. Thus, PV gradients in the top and bottom layers do not have the same
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orientation. It has been observed that, in a two-layer QG model, the jets tend to align

with the mean barotropic PV isolines (Boland et al., 2012). The tilt angle of the barotropic

PV isolines from the zonal direction is given as

θ = tan−1
(

H2Tx
(H1 +H2)β

)
. (3.1)

In our simulations, the jet tilt angles are 5.71◦, 7.13◦ and 9.46◦ in the three cases.

These tilt angles are larger than the tilt angles estimated using equation (3.1), which

are 1.78◦, 3.01◦ and 5.99◦. One of the reasons for the mismatch is the use of periodic

boundary conditions in the simulations, which restrict the jets to tilt at specific angles

and require the jet pairs to be evenly spaced. Note that the spatial structures of the PV

anomaly field in the top and bottom layers are significantly different. This is because

the layer-wise PV gradients are not oriented in the same direction and the mean PV

isolines in the upper and lower layers are not parallel. In contrast, the jets in the top

and bottom layers are perfectly aligned with each other. As a result, the jets cross the

layer-wise mean PV isolines, which leads to the differences in the PV spatial structure. In

float observations and ocean models, tilted jets are also seen to have tilt angles of about

5◦ − 10◦ (Melnichenko et al., 2010; Van Sebille et al., 2011).

Moreover, the jets drift in the meridional direction (see Hovmöller diagram in figure

3.1). For positive (negative) values of Tx, the jets drift southwards (northwards). The

jets propagate with nearly constant speeds and, in the numerical solutions, the jet propa-

gation speeds in the direction perpendicular to jets’ phase lines are about 0.20, 0.48, and

0.74 cm s−1. We computed the exact drift velocities by applying principal component

(PC) analysis to the streamfunction field in the equilibrium state. We decomposed the

streamfunction field into a set of orthogonal patterns (refer Hannachi et al., 2007, for a

brief review of the technique). The drifting jets are captured by the first two empirical

orthogonal functions (EOFs) and the power spectra of the corresponding PCs peak at a

single frequency (figure 3.2). This frequency peak corresponds to the jet drift velocity.

We then used the peak frequency ω and the wavevector k corresponding to the tilted jets

to compute the drift velocity by using the following relation:

c =
ω

|k|2
k, (3.2)

where c is the jet drift velocity and k = 2π
Lx
î+ 2πn

Ly
ĵ (n represents the number of jet pairs,

and î, ĵ represent the zonal and meridional unit vectors, respectively).

Another important aspect to note is that the system takes a long time to attain

an energy equilibrium state (figure 3.1i), which is in contrast to the case of zonal jets

over a flat bottom. Although the system develops multiple jets in the simulations by

1, 000 days (see figure 2.4), the total energy continuously increases until about 4, 000
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Figure 3.2: Adopted from Khatri and Berloff (2018a). EOF analysis of the streamfunction field in the medium-
slope simulation (data for the last 10,000 days, i.e. 500 snapshots, in the simulation was used for the EOF
analysis); (a,b): EOF 1-2 in the top layer (colorbar range is [-1 1]); (c,d): Power spectra (normalised to unity)
of the PCs corresponding to these EOFs. One could think of drifting jets as a propagating wave. We know
that a propagating wave can be represented with two EOFs, which are identical but with a phase shift of π/2,
and their PCs continuously oscillate between the maximum and minimum values to reflect the propagation.
Thus, the power spectra of the PCs show distinct peaks in the frequency space. The wavevector k and peak
frequency ω corresponding to the EOFs can be used to compute the jet drift velocity as c = (ω/|k|2)k.

days before reaching statistical equilibrium. Also, the total energy ( 1
2A

∫
A

[H1|∇ψ1|2 +

H2|∇ψ2|2 + H1S1(ψ1 − ψ2)
2], where A is the domain area, and note that H1S1 = H2S2)

in the equilibrium state increases with the zonal slope magnitude; however, there is a

negligible change in the baroclinic growth rates for the chosen slope magnitudes (figures

2.2-2.3). We further discuss these aspects later in this chapter. We ran the simulations

for 20,000 days and used the data of the last 10,000 days (i.e. 500 snapshots) for the

analysis discussed in this chapter. In our simulations, Rossby number is about 0.01 at

length scales of 100 km as velocities are of order of 0.1 m s−1 and this agrees with the

typical velocity and length scales in the oceans. Hence, it is appropriate to study the jet

dynamics in a QG model.

We ran a number of simulations with different horizontal resolution and domain

size, and did not observe any significant change in the jet tilt angles and drift speeds.

We also ran channel simulations (see appendix B.1 for details), where we used partial-slip

boundary conditions on the meridional boundaries and also ensured no-normal flow on

the meridional boundaries. The partial-slip boundary conditions are used to parameterise

unresolved near-boundary processes (Berloff and McWilliams, 1999). In these simulations

too, we found tilted, drifting jets. However, the dynamics become quite complicated in the

presence of meridional boundaries, as secondary circulations develop along the boundaries.

We do not study the impacts of these secondary circulations in this thesis and focus on

the dynamics of jets and eddies in doubly-periodic domains.
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For the choice of parameter values, only 3-5 jet pairs are formed in the whole

domain and, as a consequence, jets can have only certain tilt angles allowed by periodic

boundaries. Given this, the jet tilt angles and drift speeds in doubly-periodic simulations

tend to be greater than in channel simulations. These artefacts could be minimised by

using a very large domain, as it would increase the number of jet pairs in the domain.

However, it would require significantly more computational resources. The primary aim

of this work is to understand the jet drift mechanism and investigate how large-scale

dynamics is affected by topography. Hence, the choice of a doubly periodic domain is

reasonable.

It is worth mentioning that, in many places in the oceans, alternating jets experi-

ence steep topography, where the topographic gradients are much larger than the slope

magnitudes considered here. The results of this work may not apply to those situations

directly. With this work, we intend to understand jet dynamics in mid-oceans over slowly

varying topography and away from continental boundaries. Also, note that topographic

impacts are significantly enhanced in the two-layer QG model because topography affects

the motion of the full lower layer, which is 3 km deep in our model. It is expected that,

in real oceans or continuously stratified models, the topographic slope magnitudes chosen

in this work would result in smaller jet tilt angles and drift speeds than the ones observed

in our simulations.

3.2 Drift velocities from the linear dispersion relation

In general, both linear dynamics and nonlinear eddy effects can induce jet drift. We

first analyse the role of the linear dynamics. In this section, we compare the jet drift

velocities, which we computed using the linear dispersion relation, with the jet drift

observed in the fully nonlinear numerical solutions. In particular, we used equation (2.3)

to compute frequencies of the Fourier modes matching the jets in the simulations. We

found that the real parts of these frequencies are nonzero. This means that, even in the

linear system, tilted Fourier modes propagate. We then computed the phase velocities of

these Fourier modes using equation (3.2)∗. These phase velocities, as well as the jet drift

velocities estimated from the simulations, are shown in table 3.1. The estimates from the

dispersion relation match well with the drift speeds in the fully nonlinear simulations and

the effects of eddies on the jet drift is quite small. The eddies seem to act against the

jet drift, as the observed drift speeds are slightly smaller than the predictions from the

dispersion relation. This difference is more for steeper zonal slopes and is about 30% in the

large-slope simulation. These comparisons indicate that jet drift speeds can be estimated

∗Equation (2.3) results in two frequency solutions for each wavenumber pair (kx, ky). Thus, for each
wavenumber, there are two different drift velocities, which are directed in opposite directions and are of
different magnitudes. In order to compare the jet drift velocities, we considered the frequency solution
predicting the same drift direction as seen in the simulations.
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from the linear dispersion relation, at least for small slope magnitudes. However, in cases

where Tx and β are similar in magnitude, tilted jets may not follow the phase speeds of

linear Rossby waves. Although the jet formation is a strongly nonlinear phenomenon, the

linear dynamics has strong control over the large-scale flow (Berloff and Kamenkovich,

2013a,b). Over a flat bottom, the linear dynamics predicts the presence of stationary

zonal eigenmodes, which correspond to zonal jets. However, tilted eigenmodes are not

stationary and propagate with constant velocities, and this property agrees well with the

numerical simulations. Eddies also affect the jet drift, which is discussed in the next

section.

Tx (m−1s−1) Drift: Simulations Drift: Dispersion Relation

0.83× 10−12 −0.02̂i −0.21ĵ −0.02̂i −0.23ĵ

1.4× 10−12 −0.06̂i −0.47ĵ −0.06̂i −0.53ĵ

2.8× 10−12 −0.12̂i −0.73ĵ −0.18̂i −1.06ĵ

Table 3.1: Jet drift velocity (cm s−1) estimates from the numerical simulations and dispersion relation. î
and ĵ represent the unit vectors in the zonal and meridional directions, respectively.

3.3 Nonlinear effects and the role of eddies

Mesoscale eddies, which gain energy from the available potential energy through baro-

clinic instability, exchange momentum and buoyancy with the large-scale flow and affect

the jet dynamics. The impacts of these exchange processes on the jets can be studied by

comparing the cross-jet profiles of eddy forcing and time-mean PV. In the case of sta-

tionary zonal jets, the nonlinear eddy stress terms can be analysed by decomposing the

flow field into the time-mean large-scale flow and eddies (e.g. Panetta, 1993; Berloff et al.,

2009a). However, in the case of drifting jets over the sloped topography, the large-scale

flow itself is time-dependent and it is difficult to separate eddies from the jets. To over-

come this issue, we used a frame of reference propagating with the tilted jets such that

the jets appear stationary and zonal. In this configuration (figure 3.3), the speed of the

frame of reference c and tilt angle θ correspond to the jet drift speed and tilt angle, re-

spectively, which we estimated from the simulations. We rewrote the governing equation

(2.1) in the new drifting, rotated frame of reference. By doing this, we do not violate the

PV conservation as the new frame of reference does not accelerate. The new governing

equations are (see derivation in appendix A.1 and note that ψi = ψi(p, q, t)):[
∂

∂t
− c ∂

∂q

]
Πi = −

(
∂ψi
∂p
− δi1Ub sin θ

)
∂Πi

∂q
+

(
∂ψi
∂q
− δi1Ub cos θ

)
∂Πi

∂p

+ν∇4ψi − δi2γ∇2ψi, (3.3)
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Figure 3.3: Adopted from Khatri and Berloff (2018a). New coordinate system (p,q are the new axes), which
is at an angle θ (positive for anticlockwise rotation) from the original xy coordinate system and is propagating
with speed c (positive in q direction). θ and c correspond to the jet tilt angle and drift speed, respectively,
estimated from the numerical solutions. Alternating jets are represented with green arrows and the time-mean
profile of the jets depends on q only.

where

Π1 =

Q1︷ ︸︸ ︷
∇2ψ1 + S1(ψ2 − ψ1) +(β + S1Ub)(q cos θ + p sin θ + ct cos θ),

Π2 =

Q2︷ ︸︸ ︷
∇2ψ2 + S2(ψ1 − ψ2) +(β − S2Ub)(q cos θ + p sin θ + ct cos θ)

+Tx(−q sin θ + p cos θ − ct sin θ).


(3.4)

Here, Πi is the layer-wise absolute PV, which is the sum of Qi (PV of the generated

flow) and the background PV. Also, all variables are functions of spatial directions (p, q)

and time. ∇ = ( ∂
∂p
, ∂
∂q

) and δij is the Kronecker delta. The first two terms on the right-

hand side (RHS) of equation (3.3) capture the PV generation by the imposed background

flow and PV redistribution by eddies. The rest of the terms on the RHS are viscous dissi-

pation and bottom drag terms, which remove enstrophy and energy from the system. The

role of these terms can be assessed in the time-mean PV balances, which we derived from

equation (3.3). We used Reynolds-style decomposition in the moving frame of reference

to represent the variables as a sum of the time-mean flow (Qi, ψi) and transient eddies

(Q′i, ψ
′
i), and further averaged the equations over time (complete derivation can be found

in appendix A.2). The layer-wise time-averaged equations are:
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∂Q1

∂t
= −∇ · (u′1Q′1)︸ ︷︷ ︸

Eddy Forcing

+

Lc1︷ ︸︸ ︷
(c+ Ub sin θ)

∂Q1

∂q

Lm1︷ ︸︸ ︷
−(β + S1Ub) sin θ · u1︸ ︷︷ ︸

Linear Stress Terms

+

Dν1︷ ︸︸ ︷
ν∇2ζ1︸ ︷︷ ︸

Dissipation

, (3.5)

∂Q2

∂t
=

Eddy Forcing︷ ︸︸ ︷
−∇ · (u′2Q′2) +

Linear Stress Terms︷ ︸︸ ︷
c
∂Q2

∂q︸ ︷︷ ︸
Lc2

−[(β − S2Ub) sin θ + Tx cos θ] · u2︸ ︷︷ ︸
Lm2

+

Dissipation︷ ︸︸ ︷
ν∇2ζ2︸ ︷︷ ︸
Dν2

−γζ2︸ ︷︷ ︸
Dγ2

, (3.6)

where ui represents the velocity field (ui = (ui, vi) = (−∂ψi/∂q, ∂ψi/∂p)) and ζi is the rel-

ative vorticity (ζi = ∇2ψi) in each layer. Note that the terms containing time derivatives

of the mean PV (in the rest of the chapter, “mean PV” refers to the time-mean PV due to

the developed flow only, i.e. Qi) vanish in the energy equilibrium state and are kept just

for clarity. It is clear from equations (3.5-3.6) that, in the statistical equilibrium state, the

nonlinear terms (referred to as “eddy forcing” or “nonlinear stress terms”, hereafter) and

linear terms (“linear stress terms”: Lci + Lmi , and “dissipation terms”: Dν
i +Dγ

i ) balance

each other. We analyse the role of these linear and nonlinear stress terms by comparing

their cross-jet profiles.

In order to compute the stress terms, we used linear interpolation to interpolate

the streamfunction field on the rotated pq coordinate system at every time step and then

aligned these individual snapshots in the moving frame of reference. We then computed

eddy forcing and linear terms present on the RHS in equations (3.5-3.6). We further

averaged these terms over time and in the direction along the jets to create the cross-jet

profiles (shown in figure 3.4 for the medium-slope simulation). As expected, the linear

and nonlinear stress terms largely cancel† each other (figure 3.4a,b). We also examine the

relative contributions of the individual linear terms (see figure 3.4c,d), which contribute

to the net linear stress terms. In the top layer, Lc and Lm terms (hereafter we refer to

these as “radiation stress term” and “inertial stress term”, respectively) are roughly four

times in magnitude than the magnitude of the eddy forcing term in the top layer. On the

other hand, linear stress terms and nonlinear stress terms are of similar strength in the

bottom layer. The radiation and inertial stress terms are in opposite phases; hence, they

compensate for each other and the difference is balanced by the eddy forcing term. The

contribution of the dissipation terms is quite small, so we neglect the dissipation terms

in the rest of the analysis. These observations support our hypothesis that the linear

†Linear interpolation leads to small deviations from zero and a higher-order interpolation scheme could
be used for better accuracy. However, linear interpolation was found to be sufficient here. In order to
verify the results, the stress terms were also evaluated in the original xy coordinate system and the stress
fields were then interpolated in the moving frame of reference. There were no significant differences.
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dynamics can be used to understand the jet drift in our simulations.
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Figure 3.4: Adopted from Khatri and Berloff (2018a). Time-mean cross-jet profiles for the medium-slope
simulation; (a,b): eddy forcing (NLi) and linear stress terms + dissipation terms (Li); (c,d): radiation stress
term (Lci ), inertial stress term (Lmi ), and dissipation terms (Dν

i , Dγ
i ); and (e,f): Reynolds stress term (Rsi)

and form stress term (Fsi). The cross-jet profiles of the Reynolds stress term and form stress term were
smoothed with 10-point moving averages. The profiles were averaged in the moving frame in the interval
10,000-20,000 days. Top and bottom panels are for the upper and lower layers, respectively. The stress terms
(units are in s−2) were normalised by multiplying them to factors of 5× 1012 and 2× 1013 in the upper and
lower layers, respectively. The time-mean PV profiles (Qi, normalised) are denoted with dashed blue curves
(a,b,e,f) and were multiplied by factors of 2.2× 105 and 8.8× 105 in the upper and lower layers, respectively.

It is quite interesting that, in both layers, the linear stress terms are in phase with

the mean PV profiles while the eddy forcing terms tend to smoothen the PV profiles (figure

3.4a,b). As shown in table 3.2, the linear stress terms show a strong positive correlation

(∼ 0.6) with the time-mean PV, whereas the eddy forcing is negatively correlated with

the time-mean PV (correlation coefficient ∼ −0.3). This indicates that the jets are forced

by the linear stress terms and eddies act to weaken the jets. Previous works on zonal jet

formation in the oceans and planetary atmospheres have shown that eddies drive the jets

(Ingersoll et al., 1981; Panetta, 1993; Ingersoll et al., 2000; Berloff et al., 2009a,b; Chen

et al., 2015). However, the correlation coefficients in table 3.2 suggest the opposite. In
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order to clarify this issue, we computed the Reynolds stress term Rs and form stress term

Fs (eddy forcing is the sum of the Reynolds stress term and form stress term):

Rsi = −∇ · (u′iζ ′i), (3.7)

Fsi = −εiSi∇ · (u′i(ψ′2 − ψ′1)), (3.8)

where i = 1, 2 represent the upper and lower layers, respectively, and ε1 = −ε2 = 1. The

rest of the variables are the same as defined in equations (3.5-3.6).

As seen in figure 3.4(e,f), the Reynolds stress term and form stress term have op-

posite effects on the mean PV profile. The Reynolds stress term tends to make the mean

PV profile sharper in the top layer; however, we do not observe any clear impact of the

Reynolds stress term in the bottom layer (see the correlation coefficients in table 3.2).

This indicates that the Reynolds stress term forces the jets mainly in the upper layer

(see also the discussion in Thompson and Young, 2007; Khatri and Berloff, 2018b). We

study this aspect in detail in chapter 6. On the other hand, the form stress term tends to

smoothen the mean PV profile as the form stress term and mean PV profiles are negatively

correlated in both layers (see the correlation coefficients in table 3.2). This is because

eddies gain energy from the available potential energy of the mean flow and act to reduce

the vertical shear in the system. As a result, the form stress term is anti-correlated to

the mean PV. These observations are in agreement with theoretical aspects. In a system

forced with an eastward background vertical shear, we expect the form stress term to act

against the mean PV in both layers and the Reynolds stress term to force the jets in the

upper layer (Berloff et al., 2009a; Khatri and Berloff, 2018b).

Layer Linear (Lci + Lmi ) Eddy (Rsi + Fsi) Reynolds (Rsi) Form (Fsi)

Top (i = 1) 0.60 −0.24 0.26 −0.93

Bottom (i = 2) 0.86 −0.33 −0.01 −0.89

Table 3.2: Correlation coefficients between the time-mean cross-jet profiles of the linear and nonlinear stress
terms, and the mean PV (Qi) in both layers for the medium-slope simulation. The jets are forced by the linear
stress terms while eddies act against the jets.

Note that the Reynolds stress term and form stress term are of comparable mag-

nitudes in the top layer (figure 3.4e). In the case of zonal jets over a flat bottom, the

Reynolds term is generally much stronger than the form stress term in the top layer and,

in the overall balance, eddy forcing tends to make the mean PV profile sharper; thus,

eddies force the jets. However, in the presence of the sloped topography, the effect of

the form stress term is more prominent and, in fact, it overcomes the Reynolds stress

term in the upper layer. As a result, eddies act against the jets and gain energy from the

jets, which are forced by the linear stress terms. Kamenkovich et al. (2009) studied the

dynamics of multiple jets in the North Atlantic ocean and found evidence of both kinds
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of eddy feedbacks (also see Melnichenko et al., 2010; Barthel et al., 2017; Youngs et al.,

2017). It is important to note that if the Reynolds decomposition is used in a stationary

frame of reference to compute eddy field, then eddies would also include the contribution

from the drifting jets; thus, eddy forcing would include the terms interpreted as linear

stress terms in this work. This could make it difficult to compare our results to earlier

studies.
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Figure 3.5: Adopted from Khatri and Berloff (2018a). Time-mean cross-jet profiles for the medium-slope
simulation; (a,b): Eddy relative vorticity flux v′iζ

′
i, eddy buoyancy flux εiSi.v′i(ψ

′
2 − ψ′1) and eddy PV flux

v′iQ
′
i; (c): Heat diffusivity. The profiles were averaged in the moving frame in the interval 10,000-20,000 days.

The green curves in (a,b) represent the mean flow (normalised), and the actual velocity magnitudes are shown
in (c).

We also computed the cross-jet profiles of layer-wise eddy PV fluxes (v′iQ
′
i), eddy

relative vorticity fluxes (v′iζ
′
i) and eddy buoyancy fluxes (εiSi.v′i(ψ

′
2 − ψ′1)) across the jets

(figure 3.5a,b). The eddy buoyancy fluxes (also called as “eddy heat fluxes”) contribute

the most to the eddy PV fluxes. Here, eddies transport buoyancy and PV anomalies

southwards (northwards) in the top (bottom) layer. We further computed eddy heat

diffusivity µh:

µh =
εiSi.v′i(ψ

′
2 − ψ′1)

−∂qbi
=

εiSi.v′i(ψ
′
2 − ψ′1)

−∂q(εiSi(ψ2 − ψ1) + εiSiUbq cos θ)
=

v′i(ψ
′
2 − ψ′1)

u2 − u1 − Ub cos θ
, (3.9)

where bi is the layer-wise time-mean buoyancy and other notations are the same as in
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equations (3.7-3.8). Although the expressions for the heat diffusivity are different in

individual layers, they are mathematically equivalent and the computed cross-jet profiles

of the layer-wise heat diffusivity are the same. As seen in figure 3.5c, the heat diffusivity

is positive at all latitudes. Hence, the eddies advect buoyancy anomaly down-gradient,

which leads to smoothening of the PV gradients. Also, note that the maxima (minima)

in the heat diffusivity profile roughly coincide with the eastward (westward) jets. Since

the eddy flux is at maximum in the eastward jet cores, the dynamics do not agree with

the theory of barotropic “PV staircases”, which predict reduced eddy transport across

eastward jets (e.g. Dritschel and McIntyre, 2008). The eddy relative vorticity fluxes, on

the other hand, are positively correlated with the mean flow (figure 3.5a,b); thus, they

force the jets or, in other words, eddy relative vorticity fluxes are up-gradient. Overall,

the behaviour of these fluxes is the same as seen in zonal jets over a flat bottom (Panetta,

1993; Thompson and Young, 2007). Only the relative contributions of the eddy relative

vorticity and buoyancy fluxes to the eddy PV fluxes change because of the presence of

the sloped topography. The magnitude of the heat diffusivity is significantly affected by

the zonal slope magnitude and we analyse this aspect in the next chapter.

As discussed above, in the presence of the topography, the form stress term domi-

nates over the Reynolds stress term and, in the overall balance, eddies tend to act against

the jets. In order to observe the change in the eddy behaviour from being jet-supporting to

jet-opposing more clearly, the correlation coefficients between the eddy forcing and mean

PV profiles were computed in simulations run with different zonal slope magnitudes (table

3.3). The correlation in the top layer changes from a positive value to negative values

with increasing the slope magnitude. This shows that, over a flat bottom, eddies sup-

port the jets, whereas eddies tend to act against the jets over a sloped topography due

to an increase in the strength of the form stress term. Note that, in the bottom layer,

the correlation is always negative. This is because, in the bottom layer, the eddy forcing

is dominated by the form stress term (Thompson and Young, 2007; Khatri and Berloff,

2018b) and the mean PV has the majority of the contribution from the buoyancy term,

S2(ψ1−ψ2). Since the eddy buoyancy fluxes are always down-gradient, the correlation is

always negative in the bottom layer. We discuss the role of layer-wise eddy fluxes in detail

in chapter 6. It is important to note here that the computed critical slope magnitude,

at which the correlation changes the sign, is not unique and strongly depends on the

chosen parameter values. The critical slope may also be affected by the imposed periodic

boundary conditions in the model.

The analyses of the eddy forcing and eddy PV fluxes show that the vertical flow

structure is a major factor that decides the impact of eddies on the large-scale flow.

Our hypothesis is that the primary role of eddies here is to stabilise the system by either

forcing or acting against the jets. In the case of zonal jets over a flat bottom, eddies deposit

momentum into the jets and counteract the viscous dissipation and bottom friction. On
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Tx 0 0.55× 10−12 0.83× 10−12 1.4× 10−12 1.94× 10−12 2.8× 10−12

Top 0.67 0.24 −0.07 −0.24 −0.64 −0.56

Bottom −0.52 −0.82 −0.84 −0.33 −0.97 −0.66

Table 3.3: Correlation coefficients between the cross-jet profiles of the time-mean layer-wise eddy forcing
(EFi = Rsi + Fsi, where i = 1 and i = 2 indicate the top and bottom layers, respectively) and the time-
mean PV (Qi) as a function of the zonal slope magnitude (Tx units are in m−1s−1). For the rest of the
parameters in the numerical simulations, values shown in table 2.1 were used.

the other hand, over a sloped topography, the tilted jets are directly forced by the inertial

stress term Lm and eddies remove energy from the jets to compensate for the linear

forcing. This way, eddies help in stabilising the system.

3.4 Jet drift mechanism

On the basis of the analysis in the previous sections, we argue that the jet drift is mainly

controlled by the linear dynamics in our simulations. This can be understood by examining

the linear stress terms in equations (3.5-3.6) more closely. The inertial stress term Lmi ,

which directly forces the jets by sharpening the mean PV profile, is proportional to the

mean along-jet velocity in each layer. By construction, the absolute maxima of ui and

Qi are not aligned and have a large offset. In a similar manner, the cross-jet profiles of

the radiation stress term Lci , which counteracts the inertial stress term, and mean PV

are also significantly offset. In fact, the profiles of Lci and Qi are exactly orthogonal to

each other (i.e. zero correlation), as Lci is proportional to ∂Qi/∂q in both layers (the

maximum/minimum correlation coefficients computed using the time-lagged profiles and

the corresponding lead/lag phases are shown in table 3.4). The inertial stress terms tend

to enhance the mean cross-jet PV gradients resulting in the strengthening of the jets (see

figure 3.4c,d). The maximum increase in the absolute PV values is associated with the

maxima in the mean flow (a schematic is shown in figure 3.6). Also, in the equilibrium

state, the domain integrated PV is conserved governed by the QG dynamics. Thus, in

order to have both a local PV increase induced by the inertial stress terms and the global

PV conservation, the jets drift southwards. The same applies to the case of a negative

zonal slope, in which only the jet drift direction reverses. On the contrary, the absolute

maxima in the cross-jet eddy forcing and mean PV profiles are almost aligned (table 3.5)

and eddies have a very limited impact on the jet drift. Hence, the off-core linear forcing

terms make the jets drift.

Boland et al. (2012) anticipate that the tilted jets drift meridionally to negate the

effect of PV advection by the mean flow across PV isolines. The mechanism proposed

in this thesis is in agreement with Boland et al. (2012) . It is evident from equations

(3.5-3.6) that the inertial stress terms are associated with PV advection by the mean
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Radiation stress term (Lci) Inertial stress term (Lmi )

Layer Cor. Min. lag-cor. Lag (deg.) Cor. Max. lag-cor. Lag (deg.)

Top (i = 1) 0 −0.91 84.4 0.13 0.97 78.8

Bottom (i = 2) 0 −0.97 90 0.58 0.97 56.3

Table 3.4: Correlation coefficients and the maximum/minimum lag-correlation coefficients between the time-
mean cross-jet profiles of the linear stress terms and mean PV (Qi) for the medium-slope simulation. Here, a
lag period of 180◦ is equal to the width (in q direction) of one jet pair.

Reynolds stress term (Rsi) Form stress term (Fsi)

Layer Cor. Max. lag-cor. Lag (deg.) Cor. Min. lag-cor. Lag (deg.)

Top (i = 1) 0.26 0.29 16.9 −0.93 −0.96 11.3

Bottom (i = 2) −0.01 0.08 −129 −0.89 −0.90 −11.3

Table 3.5: Correlation coefficients and the maximum/minimum lag-correlation coefficients between the time-
mean cross-jet profiles of the nonlinear stress terms and mean PV (Qi) for the medium-slope simulation. Here,
a lag period of 180◦ is equal to the width (in q direction) of one jet pair.

flow and the radiation stress terms, which capture the jet drift, compensate for this PV

advection. Melnichenko et al. (2010) analysed the time-mean relative vorticity and PV

balances to study the dynamics of drifting striations in the Pacific ocean using the output

from an ocean general circulation model and altimetry dataset. They found the presence

of linear advection terms in the time-averaged PV budget due to a nonzero angle between

the large-scale flow and tilted striations, and they suspect that these linear advection

terms could potentially induce jet drift. Note that, in our simulations, the eddy forcing

and mean PV profiles also have a small offset (table 3.5), which could force the jets to

move northwards, which is opposite to the observed drift direction. Indeed, eddies tend

to slow the jets down (see table 3.1); however, it is not sufficient to stop the drift induced

by the linear stress terms. On the other hand, eddies may have a significant impact on

jet drift in the presence of steep topography and this has been seen in some studies (e.g.

Thompson and Richards, 2011; Chen et al., 2015).

There are other mechanisms that can cause jet drift even in the absence of topog-

raphy. For example, jets drift in systems forced with a meridionally non-uniform stress

term, which results in meridionally asymmetric eddy momentum fluxes leading to jet drift

in the meridional direction (Williams, 2003; Chan et al., 2007; Chemke and Kaspi, 2015b).

It has been suggested that jets propagate in systems in which the reflectional (or mirror)

symmetry is broken (Srinivasan, 2013). In general, idealised studies forced with either a

uniform background vertical shear or an isotropic small-scale forcing generate stationary

zonal jets, as the choices of the forcing terms preserve the mirror symmetry. Even in a

barotropic model, an anisotropic forcing term can break this symmetry resulting in the

formation of drifting jets (see chapter 3 in Srinivasan, 2013). In our work, the zonal topo-

graphic slope breaks this symmetry. However, the jets are tilted over topography, whereas
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Figure 3.6: Adopted from Khatri and Berloff (2018a). Sketch of the cross-jet profiles of the mean PV (violet)
and mean along-jet velocity (red). The profiles show the offset in the alignment observed in the numerical
simulations (relative magnitudes are not to scale). The locations of the maximum increase/decrease in PV
are indicated with red dashed arrows and the resulting direction of jet drift is shown with violet arrows. The
zero lines are shown with black dotted lines.

the drifting jets can stay purely zonal in systems forced with an anisotropic forcing.

3.5 Interpretation of the linear forcing

We observe that the inertial stress terms force the tilted jets and eddies remove energy

from the jets. Here, the tilted jets and background shear are coupled via the sloped

topography. The jets are able to gain energy directly from the imposed background shear

and the forcing intensity depends on the mean flow strength. On the other hand, eddies

gain energy from the jets as well as from the background shear. This is confirmed in

chapter 4, where we analyse energetics of the tilted jets and eddies in the equilibrium

state. This balance works only in continuously forced-dissipative systems as the flow

dynamics would be very different in the absence of the background shear, which is the

energy source for the jets. This aspect is addressed in detail in chapter 5.

26



3.6 Energy equilibration and the long-time flow adjustment

In addition to the jet tilt and drift, the energy of the system in the equilibrium state

increases significantly with the zonal slope magnitude (figure 3.1i), even though the baro-

clinic growth rates are roughly the same. This happens because eddies grow by gaining

energy from the background vertical shear through baroclinic instability as well as from

the tilted jets. At the same time, the tilted jets are directly forced by the imposed shear

and this energy gain is more for steeper zonal slopes. As a result, the system tends to be

more energetic. It has been shown previously that eddies tend to be more energetic in

systems in which the background shear has a nonzero meridional component and the rate

of increase in the eddy energy is roughly proportional to the angle between the direction

of the imposed shear and PV isolines (Arbic and Flierl, 2004b; Smith, 2007). In our study,

PV isolines are tilted from the zonal direction due to the presence of the sloped topogra-

phy and this introduces a nonzero angle between the vertical shear and background PV

isolines. Thus, the energy of the system increases in the equilibrium state.

Another important observation we made is that, in the presence of topography,

the system takes a long time to attain energy equilibrium. As seen in figure 3.1i, the

total energy continuously increases in the interval 1,000-4,000 days, although the jets are

formed by 1,000 days (figure 2.4). In order to investigate this matter, we first compare

the energies of the barotropic and baroclinic flow components during this transient period

(figure 3.7). It can be seen that both barotropic and baroclinic components grow at

similar rates and the ratio of the barotropic kinetic energy to the total kinetic energy

(barotropic + baroclinic, EBT +EBC) remains roughly constant during this time. Hence,

this does not explain why energy of the system increases in the transient period.

Another possibility is that this slow energy increase is associated with the direct

forcing, which is due to the imposed vertical shear, experienced by the jets. The inertial

stress terms, which force the jets, are directly proportional to the mean along-jet velocity

and this direct forcing becomes active only after the formation of the jets. Note that,

initially, eddies grow via baroclinic instability and transfer energy upscale resulting in

the formation of the jets. Later, however, the formed jets start gaining energy from the

background flow through the inertial stress terms and eddies start acting against the jets.

Given this, there should be a transition in the eddy behaviour from being jet-supporting

to jet-opposing. In order to confirm the hypothesis, we computed correlation coefficients

between the cross-jet profiles of the eddy forcing and PV in the time interval 500-4,000

days. As seen in figure 3.7c, the correlation coefficient in the top layer changes from a

positive value to negative values with time. This shows that the form stress term becomes

much stronger than the Reynolds stress term during this transient period and the overall

impact of eddies is to weaken the jets. In the bottom layer, the correlation coefficient

always remains negative because the Reynolds stress term in the lower layer is very weak
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Figure 3.7: Adopted from Khatri and Berloff (2018a). Time evolution in the medium-slope simulation (a)
Barotropic velocity = 1

H1+H2
(H1u1 +H2u2), (b) Baroclinic velocity = u1−u2 (cross-jet profiles, averaged in

p direction, were aligned in the frame of reference propagating with the drifting jets; legend units are in days),
and (c) Correlation coefficients computed between the eddy forcing and PV profiles, and the barotropic kinetic
energy fraction. Note that we computed the eddy field using the full flow-field at every time step because we
could not compute a mean flow in the transient state.

and the form stress term contributes the most to the eddy forcing term (also read the

discussion of table 3.3). These results agree with our hypothesis and provide a reasonable

explanation for the long-time energy adjustment.

3.7 Summary

In this chapter, we studied the physical mechanism of jet drift over a zonally sloped

topography in a two-layer QG model. We observe that jet drift is predicted by the linear

dispersion relation and the drift speeds agree well with the phase speeds of linear Rossby
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waves for gentle slopes. However, the deviations can be significant for steep slopes. We

further analysed the PV budget in a frame of reference moving with the jets and it is found

that linear stress terms, which we referred to as radiation stress and inertial stress terms,

appear in the time-mean PV balances due to the presence of topography. The linear

stress terms and eddy forcing largely balance each other. We also show that the radiation

stress and inertial stress terms are much stronger than the nonlinear eddy forcing and the

linear dynamics controls the jet drift. The jets drift meridionally to compensate for PV

advection by the mean flow across PV isolines, which is in agreement with Boland et al.

(2012). Also, we found that the tilted jets are coupled to the imposed shear and are able

to gain energy directly from the background vertical shear. On the other hand, eddies act

against the jets. This is because eddy buoyancy effects are significantly enhanced over

topography and the form stress term tends to dominate over the Reynolds stress term in

the top layer. As a result, the impact of eddies is the opposite to the case of eddy-driven

stationary zonal jets (Rhines, 1975). The results suggest that, in the oceans, eddies can

also act to weaken multiple jets in some regimes.
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4
Energetics of tilted jets

As seen in the previous chapter, in the presence of the sloped topography, tilted jets

are able to gain energy directly from the imposed vertical shear. Here, we use energy

equations, which we derived from equation (3.3), for the mean flow and eddies to compute

energy gain by the jets and eddies directly from the imposed vertical shear as a function

of the slope magnitude. We further analyse the energy exchanges between the jets and

eddies as well as energy loss due to viscous dissipation and bottom friction in the numerical

simulations run with different magnitudes of the zonal slope. Also, the impacts of the

slope magnitude on eddy potential vorticity (PV) and heat diffusivities are investigated.

4.1 Energy budget analysis

We derived the energy equations for the mean flow, i.e. drifting jets, and eddies in the

non-stationary frame of reference, which is described in chapter 3. In order to derive the

mean flow and eddy energy budgets, we multiplied ψi (represents the time-mean flow)

and ψ′i (presents the transient eddy field), respectively, to the governing equation (3.3)

and integrated over the whole domain. We further averaged the energy equations in time

and the final equations are (refer appendix A.3 for the complete derivation):

30



∫
A

∂

∂t
(KEm + PEm) =

Tv︷ ︸︸ ︷
−
∫
A

2∑
i=1

Hiζiui · ∇ψi

Tb︷ ︸︸ ︷
−
∫
A

2∑
i=1

HiεiSi(ψ2 − ψ1)ui · ∇ψi

+

∫
A

H1S1Ub

cos θψ1
∂ψ2

∂p︸ ︷︷ ︸
≈0

− sin θψ1
∂ψ2

∂q


︸ ︷︷ ︸

Em

−
∫
A

ν

2∑
i=1

Hi|ζi|2︸ ︷︷ ︸
Vm

−
∫
A

γH2|∇ψ2|2︸ ︷︷ ︸
Dm

, (4.1)

∫
A

∂

∂t
(KEe + PEe) =

−Tv︷ ︸︸ ︷
−
∫
A

2∑
i=1

Hiζiui · ∇ψ′i

−Tb︷ ︸︸ ︷
−
∫
A

2∑
i=1

HiεiSi(ψ2 − ψ1)ui · ∇ψ′i

+

∫
A

H1S1Ub

(
cos θψ′1

∂ψ′2
∂p
− sin θψ′1

∂ψ′2
∂q

)
︸ ︷︷ ︸

Ee

−
∫
A

ν
2∑
i=1

Hi|ζ ′i|2︸ ︷︷ ︸
Ve

−
∫
A

γH2|∇ψ′2|2︸ ︷︷ ︸
De

, (4.2)

where

KEm =
2∑
i=1

Hi

2
|∇ψi|2,

PEm =
H1S1

2
(ψ1 − ψ2)

2,

KEe =
2∑
i=1

Hi

2
|∇ψ′i|2,

PEe =
H1S1

2
(ψ′1 − ψ′2)2.


(4.3)

Here, i = 1 (i = 2) denotes the top (bottom) layer and ε1 = −ε2 = 1. ψi is the layer-

wise velocity streamfunction, ui = (ui, vi) is the velocity and ζi is the relative vorticity.

KEm and KEe represent the kinetic energy of the mean flow and eddies, respectively.

PEm and PEe are the potential energy of the mean flow and eddies, respectively. The rest

of the parameters are the same as defined in table 2.1. In the state of energy equilibrium,

the time-derivatives of the sum of kinetic energy and potential energy for the mean flow

and eddies in the above equations vanish. Hence, the energy gain by the jets and eddies,
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denoted by Em (note that cos θψ1(∂ψ2/∂p) ≈ 0 because the mean flow is a function of q

only) and Ee (conversion of the background available potential energy into eddy kinetic

energy through baroclinic instability), from the imposed vertical shear is balanced by

energy loss due to viscous dissipation (Vm, Ve) and bottom drag (Dm, De). Also, as seen

in equations (4.1-4.2), the jets and eddies continuously exchange energy via exchanges

of eddy momentum (Tv) and buoyancy (Tb). In our notation, Tv and Tb are positive if

eddies lose energy to the jets. Note that, if eddies (the jets) gain energy due to eddy-jet

interactions, then the jets (eddies) lose energy by the same amount. Thus, the first two

terms on the right-hand-side in each of the equations (4.1-4.2) are of equal magnitudes

and opposite signs (refer equation (A.26) for details). A schematic of all these processes is

shown in figure 4.1. Additional terms, which can be represented in flux form, appear in the

derivations of the energy equations. The integrals of those terms over the whole domain

vanish as there is no flux input/output from the boundaries (see details in appendix A.3).

Background	Shear

Viscous	Dissipation Bottom	Drag

Jets

Em

Eddies

Ee

Tv

Dm
Vm

Ve De

Tb

Figure 4.1: Schematic of energetics. Em (Ee) represents the energy gain by jets (eddies) from the imposed
vertical shear. Tv and Tb are energy exchanges between the jets and eddies through momentum and buoyancy
exchanges. The rest of the terms represent the energy loss through viscous dissipation and bottom friction.

Similar to the approach adopted in chapter 3, we first interpolated the streamfunc-

tion field on the moving frame of reference for every snapshot in the energy equilibrium

state and computed the time-mean flow (data in the time interval 10,000-20,000 days in

the numerical simulations was used). We then subtracted the time-mean flow from the

full field to compute the eddy field at different times. We computed the energy gain,

energy exchange and energy loss terms for the numerical simulations run with different

magnitudes of the zonal slope (table 4.1). In the case of purely zonal jets over a flat
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bottom (Tx = 0), the energy gain by the jets from the imposed shear is negligible and

almost all of the energy is gained by eddies from the background vertical shear. This

makes sense because purely zonal jets cannot extract energy from the imposed vertical

shear (see the expressions for Em in equation (4.1)). The energy gain by the jets (Em)

increases with the magnitude of the slope because Em is directly proportional to the tilt

angle and the jet tilt angle increases with the slope magnitude. In fact, for steeper slopes,

the energy gain by the jets from the imposed shear is more than the energy gain by eddies

through baroclinic instability process. As a result, the system tends to be more energetic

for steeper slopes, which we observe in the previous chapter. In a way, the direct energy

transfer from the imposed shear to the jets is similar to the baroclinic instability process

as the expressions for Em and Ee are very similar. Hence, Em represents the conversion of

the background available potential energy into the mean kinetic energy of the large-scale

flow.

Energy gain Jet-eddy exchange Energy loss

Tx (m−1s−1) Em Ee Tv Tb Vm Dm Ve De

0× 10−12 0.13 3.55 1.35 −0.29 −0.63 −0.46 −2.10 −0.49

0.55× 10−12 0.82 3.58 2.48 −1.16 −1.41 −0.80 −2.01 −0.42

0.83× 10−12 2.21 5.54 3.56 −2.52 −2.18 −1.28 −3.99 −1.04

1.4× 10−12 6.65 8.48 7.84 −8.35 −4.00 −3.52 −7.62 −2.07

1.9× 10−12 17.89 15.23 11.43 −18.85 −6.72 −6.27 −17.34 −7.49

Table 4.1: Energy gains, exchanges and losses by the mean flow and eddies (units are in 104 m3s−3). Em
(Ee) represents the energy gain by the jets (eddies) from the imposed vertical shear. Tv and Tb are energy
exchanges between the jets and eddies through momentum and buoyancy exchanges. The rest of the terms
represent the energy loss through viscous dissipation and bottom friction. The terms were integrated over the
whole domain and averaged over time (for the last 10,000 days in the simulations). The computations were
performed in the frame of reference moving with the jets (see figure 3.3).

The rates of energy exchanges between the jets and eddies, which are denoted with

Tv and Tb, are also affected because of the presence of topography. As discussed in chapter

3, eddies force the jets by transferring momentum to the jets and this results in positive

values for Tv (see table 4.1). On the other hand, eddies remove energy from the jets

through eddy buoyancy effects; hence, Tb is negative in all cases. The overall impact of

eddies on the jets is determined by the sum of these two energy exchange terms. Over a

flat bottom, eddies transfer energy to the jets on the net; thus, the jets are eddy-driven.

This is in agreement with previous works on the formation of stationary zonal jets (e.g.

Panetta, 1993; Lee, 1997; Thompson and Young, 2007). However, over a zonally sloped

topography, the magnitudes of these exchange terms increase with the slope magnitude.

We observe that the magnitude of Tb increases much faster than the magnitude of Tv

and, in the numerical simulations run with relatively steeper slopes, the absolute value

of Tb is more than the absolute value of Tv. Thus, in these cases, eddies remove energy

from the jets on the net and act against the alternating jets. The same eddy behaviour is
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seen when we look at correlation coefficients between the cross-jet profiles of eddy forcing

and the mean PV as a function of the slope magnitude (see table 3.3). In the numerical

simulations corresponding to steeper slopes, negative correlation coefficients between eddy

forcing and the mean PV profiles show that eddies act against the jets. In this scenario,

the jets are directly maintained by the imposed vertical shear and eddies play a secondary

role. Eddies remove excess energy from the jets and help the system to attain an energy

equilibrium state.

In the equilibrium state, the energy gain from the imposed shear is balanced by

viscous dissipation and bottom friction terms. As the slope magnitude is increased, the

rate of energy dissipation also increases to compensate against the increasing magnitudes

of the energy gain terms and the total energy of the system is maintained in the equilibrium

state. Note that, the absolute values of the energy gain terms and dissipation terms do

not exactly balance each other in table 4.1. The deviations from zero are due to the

interpolation scheme used in interpolating the streamfunction field on the moving frame

of reference in the energy analysis. Nevertheless, the computational errors are small and

do not affect the final conclusions.

4.2 Heat and PV diffusivities

In chapter 3, we compute heat diffusivity in the moving frame of reference and it is found

that eddy buoyancy fluxes are down-gradient in the presence of the sloped topography.

Since the strength of buoyancy fluxes increases significantly with the slope magnitude, it

is helpful to analyse the impacts of topography on the magnitude of the heat diffusivity.

In addition, we also compute PV diffusivity. These diffusivity coefficients are useful in

quantifying the strength of eddy transport in the oceans. In general, eddy buoyancy and

PV fluxes are down-gradient, and the diffusivity coefficients are positive at all locations

along the cross-jet profile (e.g. see figure 3.5). Hence, we mainly focus on diffusivity coef-

ficients averaged over the whole domain. We computed the mean heat and PV diffusivity

coefficients using the following relations,

µh =

〈
εiSiv′i(ψ

′
2 − ψ′1)

−∂q(εiSi(ψ2 − ψ1) + εiSiUbq cos θ)

〉
=

〈
v′i(ψ

′
2 − ψ′1)

u2 − u1 − Ub cos θ

〉
,

µp =

〈
v′iQ

′
i

−∂q(Qi + (β + εiSiUb)q cos θ)

〉
=

〈
v′iζ
′
i + εiSiv′i(ψ

′
2 − ψ′1)

−∂qζi + εiSi(u2 − u1)− (β + εiSiUb) cos θ

〉
.

(4.4)

Here, i = 1 (i = 2) denotes the top (bottom) layer, ε1 = −ε2 = 1 and 〈.〉 represents

the mean over the whole domain. ψi and Qi = ∇2ψi + εiSi(ψ2 − ψ1) are the layer-wise
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velocity streamfunction and PV anomaly, respectively. ui = (ui, vi) and ζi are the velocity

and relative vorticity, respectively, computed in the moving frame of reference. The rest

of the parameters are the same as defined in table 2.1. Overbar represents the mean in

the along-jet direction as well as over time, whereas primes represent the eddy field.
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Figure 4.2: Domain-averaged heat and PV diffusivity coefficients as a function of Tx. The computations
were performed over the last 10,000 days in the frame of reference moving with the jets (see figure 3.3).

The computed values of the heat and PV diffusivities are shown in figure 4.2. The

values of the heat diffusivity in the upper and lower layers are the same because the

layer-wise heat diffusivity relations in equation (4.4) are mathematically equivalent. Both

the heat and PV diffusivities increase with the slope magnitude. One of the reasons for

this increase is that the strength of eddy fluxes is enhanced over topography as eddies

tend to be more energetic (eddies gain energy from the jets as well as from the imposed

shear, see table 4.1). A similar increasing trend in the magnitudes of the diffusivity

coefficients is expected over rough topography in the oceans (e.g. Tamsitt et al., 2017),

although the absolute values may not match with our idealised simulations. Our results

are in agreement with the works of Thompson (2010); Boland et al. (2012), who analysed

transport properties in drifting jets over topography. These studies computed effective

diffusivities in a stationary frame of reference; hence, their formulation included the effects

of both the drifting jets and eddies. On the other hand, in our analysis, the diffusivity

computations were performed in the moving frame of reference and only eddy fluxes were

considered.

4.3 Summary

In this chapter, we analysed the energy budgets of the drifting tilted jets and eddies in a

non-stationary frame of reference moving with the jets. We show that the tilted jets are

able to gain energy directly from the imposed eastward shear and the expression of this

energy gain term resembles the term representing the conversion of the available potential

energy to eddy kinetic energy through baroclinic instability process. However, in the case

of tilted jets, this is the conversion of the available potential energy due to the imposed

35



shear directly to the mean kinetic energy of the large-scale flow. The rates of energy gain

by the jets and eddies from the imposed shear increase with the topographic slope and

the system stabilises at higher energy levels for steeper slopes. On the other hand, eddies

play more of a secondary role and remove excess energy from the jets. In the presence

of the sloped topography, eddy buoyancy fluxes are enhanced and, for sufficiently steep

slopes, eddies remove more energy from the jets through eddy buoyancy effects than they

transfer to the jets by transferring momentum into the jets. We also computed the heat

and PV diffusivities as a function of the slope magnitude. We find that the diffusivity

magnitudes are greater for steeper slopes. This indicates that rough topography may

enhance eddy transport locally in the oceans.
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5
Effects of vanishing eddy viscosity

The contents of this chapter are derived from the manuscript titled “Tilted, drifting jets

over a zonally sloped topography: Effects of vanishing eddy viscosity”, which has been

accepted for publication in the Journal of Fluid Mechanics.

In the previous chapters, the dynamics of the jets were studied in continuously

forced-dissipative systems, in which both the tilted jets and mesoscale eddies gain energy

from the background vertical shear (Khatri and Berloff, 2018a). In the energy equilibrium

state, this energy gain from the imposed vertical shear is balanced by energy loss through

viscous dissipation and bottom friction. This suggests that reducing the dissipative pa-

rameters while keeping the strength of the background flow fixed may have a considerable

impact on the dynamics, as the balance between the forcing and dissipation terms plays

an important role in governing the large-scale dynamics. Also, the system dynamics in

the case of freely evolving turbulence, in which the background flow is absent, is not un-

derstood. In ocean models, the primary role of eddy viscosity is to dissipate enstrophy at

the grid scale; however, a considerable amount of energy is also dissipated at small-scales

due to viscous effects and this affects the dynamics.

In this chapter, our focus is on investigating the impacts of dissipation strength

on the drifting jets and studying the system dynamics in weak-dissipation flow regimes.

Here, we study the jet dynamics in a number of simulations, which we ran with dif-

ferent magnitudes of dissipative parameters while keeping the strength of the imposed

background shear fixed. In particular, we employed empirical orthogonal function (EOF)

analysis to identify dominant flow patterns in the model solutions. As we will see in the

next section, in addition to the tilted jets, other large-scale spatial patterns, which also

propagate, are observed in the flow field. The presence of many large-scale patterns is in

contrast to the case of zonal jet formation scenario, in which the flow field mainly consists
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of zonal jets and mesoscale eddies. We further analyse the nonlinear interactions among

these large-scale patterns and perform linear stability analysis to assess the impacts of

dissipative parameters on the nonlinear interactions.

5.1 EOF analysis

In order to decompose the streamfunction field into a set of mutually orthogonal spatial

patterns∗ and their principal components (PCs), we applied EOF analysis technique to the

streamfunction field data of the last 10,000 days from the doubly-periodic simulations.

We used the streamfunction field during the time period when the system was in an

energy equilibrium state (see figure 3.1). The primary purpose of using EOF analysis is

to identify the large-scale spatial patterns which contribute to the full flow field. Although

individual EOFs do not correspond to the dynamical eigenmodes in the system, EOFs do

provide some information about the presence of different energetic scales in the system.

As seen in figure 5.1, the leading four EOFs capture two types of large-scale patterns.

Note that consecutive EOFs appear in quadratures, as at least two EOFs are required to

represent a propagating pattern. The first pair of EOFs captures the titled jets (will be

referred to as J mode in the rest of the chapter) and the second pair of EOFs captures a

purely zonal mode (will be referred to as Z mode in the rest of the chapter). In order to

analyse the evolution of the J mode in time, we multiplied the first and second EOFs by

their PCs and added them to reconstruct the J mode. Similarly, we used the second pair

of EOFs and the corresponding PCs to reconstruct the Z mode. The power spectra of

the PCs corresponding to these EOFs indicate that both the J and Z modes propagate

with constant speeds corresponding to distinct frequency peaks in the power spectra (see

bottom panels in figure 5.1). The Z mode moves northward, i.e. opposite to the J mode

(see middle panels in figure 5.1). The Z mode moves much faster than the J mode. We

also verified that the J and Z modes exist irrespective of the model configuration and

boundary conditions (for J and Z modes in a channel simulation, see appendix B.2).

However, for simplicity, we only focus on doubly-periodic simulations in the rest of the

chapter.

We also noticed that the relative contributions of the J and Z modes to the flow

field are highly dependent on the magnitude of the zonal slope (variances captured by the

J and Z modes in different simulations are listed in table 5.1). The contribution of the

∗We computed EOFs corresponding to the streamfunction field because streamfunction captures the
large-scale flow structure much better than velocity and potential vorticity (PV) fields. In fact, we
tried extracting large-scale modes by applying EOF analysis to the PV field; however, the leading EOFs
mainly captured small-scale eddies, which contain most of the circulation in the system. Also, we used the
streamfunction field in both layers together to compute EOFs having the full three-dimensional structure,
i.e. variation in the zonal and meridional directions as well as in the individual layers. For the purpose of
comparison, we also applied EOF analysis to the streamfunction field in the individual layers to compute
EOFs in the upper and lower layers separately. The results did not show any considerable difference.
The leading EOFs were the same, although variances captured by different EOFs were slightly different.
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Figure 5.1: Leading EOFs of the streamfunction field in the simulation corresponding to figure 3.2 (data in
the interval 10,000-20,000 days, i.e. 500 snapshots, was used for the EOF analysis); (a) EOF1, EOF2 (b)
EOF3, EOF4. The spatial structure of the EOFs in the top layer is shown in the top panels, and Hovmöller
diagrams of the J and Z modes reconstructed using EOFs and their PCs are shown in the middle panels
(meridional cross-section of the modes at the centre of the domain is plotted against time). Colorbar range is
[-1,1], blue to red. The power spectra of PCs (normalised to unity) corresponding to the EOFs are shown in
the bottom panels. Note that the second and fourth EOFs are counterparts of the first and third EOFs, with
the same spatial structure but with a phase shift of π/2. Here, one of the EOFs in a pair is shown. The J
and Z modes together capture about 75% of the variance.

J (Z) mode to the flow field decreases (increases) with increasing the magnitude of the

zonal slope. In fact, in the numerical simulation run with Tx = 2.8 × 10−12 m−1s−1, the

variance captured by the Z mode is more than the variance of the J mode. Together, the

J and Z modes capture most of the variance in all simulations. The propagation (drift)

velocities of these modes are also shown in table 5.1, which were computed using equation

(3.2). We compare the drift speeds of the modes with phase speeds of the linear Rossby

waves obtained from the linear dispersion relation. In chapter 3, we show that the jet

drift speeds agree well with the estimates from the linear dispersion relation. It is quite

amazing that, in addition to the tilted J mode, the propagation speeds of the Z mode in

the numerical simulations are also well predicted from the linear dispersion relation. This

further strengthens the claim that the linear dynamics controls a major part of the flow

dynamics.

As shown in chapter 3, tilted jets drift to compensate for the potential vorticity (PV)

advection by the mean flow across PV isolines (Boland et al., 2012; Khatri and Berloff,

2018a) and the same physical mechanism can be used to understand the propagation of

the Z mode. The J mode advects PV across PV isolines in both layers, as the J mode

tends to be aligned with the mean barotropic PV isolines (Boland et al., 2012). On the
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Tx × 1012 Var. (%) Velocity NS (cm s−1) Velocity DR (cm s−1) ny

(m−1s−1) J Z J Z J Z J Z fBT

1.4 66.8 9.2 −0.05̂i −0.46ĵ 1.56ĵ −0.07̂i −0.53ĵ 2.15ĵ 4 2 0.45

2.1 26.6 16.4 −0.04̂i −0.31ĵ 12.58 ĵ −0.04̂i −0.34ĵ 12.80ĵ 4 1 0.56

2.8 8.3 66.8 −0.13̂i −0.81ĵ 17.26ĵ −0.18̂i −1.06ĵ 17.07ĵ 3 1 0.72

Table 5.1: Variances and drift velocities, obtained from the numerical simulations (NS) as well as using the
linear dispersion relation (DR), of the J and Z modes as a function of the slope magnitude. The rest of
the parameters were kept the same in the simulations, see table 2.1. î and ĵ are the zonal and meridional
unit vectors, respectively. ny is equal to the number of meridional wavelengths of a mode that is equal to
the meridional width of the domain. In all simulations, the zonal wavelength of the J modes is equal to
the zonal extent of the domain. fBT = EBT /(EBT + EBC) is the the mean barotropic KE fraction, where
EBT = 1/2

∫
A
|uBT |2 and EBC = 1/2

∫
A
|uBC |2 are the barotropic and baroclinic KE, respectively, integrated

over the whole domain.

other hand, the purely zonal Z mode advects PV across PV isolines in the lower layer

only. The J and Z modes propagate in nearly opposite directions. It is possible that the

J and Z modes propagate in opposite directions because, on average, these modes advect

PV in opposite directions across PV isolines. For example, if the J mode advects PV from

a high PV region to a low PV region, then the Z mode advects PV from a low PV region

to a high PV region. As a consequence, the J and Z modes tend to propagate in opposite

directions. It is important to note here that the J and Z modes correspond to the leading

tilted and purely zonal patterns observed in the EOF analysis. These modes need not

be present at the same wavenumber across all simulations. For example, the meridional

wavelengths of these modes are longer in the simulations run with steeper slopes (see

table 5.1). This is also one of the reasons for the differences in their propagation speeds,

i.e. modes with longer meridional wavelengths propagate faster.

We also look the impacts of the J and Z modes on the vertical flow structure.

In particular, we computed the ratio of kinetic energy (KE) of the barotropic velocity

component, uBT = (H1u1+H2u2)/(H1+H2), to the sum of the mean KE of the barotropic

and baroclinic velocity, uBC = u1 − u2, components in the full flow field. As shown in

table 5.1, the energy fraction increases as the slope magnitude is increased in the numerical

simulation. This suggests that the flow field tends to be more barotropic in the presence of

the Z mode, as the energy fraction of the barotropic flow increases with an increase in the

variance captured by the Z mode. It is quite likely that the barotropic flow component

becomes stronger to dissipate more energy through bottom friction, as the system tends

to be more energetic over steeper slopes (see table 4.1). We further discuss this aspect

later in this chapter.

In addition to the J and Z modes, many other large-scale modes are captured by

higher EOFs. All of these modes differ in their spatial structure, and these modes also

have different tilt angles and propagation speeds (first twenty EOFs are shown in figure

B.3). Many of these EOFs are comparable to the J and Z modes in size and are also much
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larger than the size of mesoscale eddies. As it was discussed in chapter 3, the tilted jets

tend to align with the tilted barotropic PV isolines. It is possible that, in a similar manner,

these large-scale EOFs also tend to align with PV fields in one of the layers or a linear

combination of layer-wise PV fields. However, the imposed periodic boundary conditions

in the simulations greatly affect these large-scale modes as the boundary conditions restrict

the EOFs to have only certain tilt angles. All these EOFs, which capture different large-

scale modes, can be broadly categorised into two families: the first family contains tilted

EOFs (J family) and the second family contains purely zonal EOFs (Z family). The aim

of this study is to understand why many tilted and zonal large-scale modes, irrespective

of what their meridional width and drift speeds are, coexist. We do not study specific

EOFs in the system, as these EOFs need not be unique in different scenarios. Also, the

relative contributions of EOFs vary across different simulations.

The presence of various large-scale modes makes the dynamics more complex than

in the system of zonal jets formed over a flat bottom, where the large-scale flow mainly

consists of stationary zonal jets and the rest of the flow field is dominated by mesoscale

eddies. The stationary zonal jets gain energy from mesoscale eddies, which grow through

baroclinic instability. In contrast, in our study, the flow field tends to be more complicated

as the flow field consists of multiple propagating large-scale modes (see appendix B.3).

This suggests that the upscale transfer of energy from mesoscale eddies need not lead to

the formation of only one type of alternating jets, rather many alternating patterns can

coexist. Also, in the presence of topography, the energy transfer rates across different

spatial scales are affected because of the coupling between the background flow and tilted

large-scale modes (see chapters 3,4). Many works have studied the spatial and temporal

variability in multiple jets in the oceans (e.g. Thompson, 2010; Thompson and Richards,

2011; Stern et al., 2015; Rudko et al., 2018). However, little success has been achieved in

isolating different large-scale alternating patterns constituting the flow field. Berloff et al.

(2009a,b) propose that stationary zonal jets over a flat bottom can originate due to the

presence of several phase-locked stationary zonal eigenmodes, which are solutions of the

linearised governing equations. This means that multiple stable equilibria with a different

number of jet pairs are feasible and the zonal jets correspond to one of the equilibrium

solutions. Similarly, it is possible that the large-scale modes observed in the EOF analysis

correspond to multiple stable eigenmodes comprising of both zonal and tilted modes that

exist over a sloped topography. The main difference is that, over a sloped topography,

even zonal eigenmodes are not stationary and propagate with constant speeds. These

tilted and zonal eigenmodes can also interact nonlinearly and exchange energy, which is

discussed in the next section.
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5.2 Effects of eddy viscosity and bottom friction

A number of numerical simulations were run in which the magnitudes of the dissipative

parameters were varied while keeping the values of other parameters fixed (see table 2.1).

It is observed that variances captured by the J and Z modes are strongly affected by the

eddy viscosity (ν) and bottom friction (γ) parameter values. The variances captured by

the J and Z modes and their propagation velocities in different simulations are shown in

tables 5.2,5.3. The variance captured by the Z mode increases as either eddy viscosity or

bottom friction is decreased (vice versa is true for the J mode). In fact, the Z mode is not

even observed in the flow field if the values of the dissipative parameters are beyond some

critical values. These critical values are not unique and depend on boundary conditions

and problem parameters. On the other hand, the propagation speeds of the J and Z

modes do not show a considerable change in different simulations. The J and Z modes

move meridionally in opposite directions, and the Z mode propagates approximately

three times faster than the J mode. However, in the case of ν = 50 m2s−1, the Z mode is

almost twenty times faster than the J mode (see table 5.2). In this case, the meridional

wavelength of the Z mode is equal to the meridional width of the domain and the Z mode

has only one pair of jets (figure not shown) as opposed to two pairs in other cases. Since

the meridional wavelength of the Z mode is longer in the ν = 50 m2s−1 case in comparison

to other cases, the Z mode tends to propagate faster. We further discuss this aspect in

the next section. The presence of a wider Z mode indicates the upscale transfer of energy

to very low meridional wavenumbers. One possibility is that the system tends to stabilise

at higher energy levels due to weaker dissipation; hence, a wider Z mode can be formed.

As discussed in the previous section, the EOFs need not be exactly the same in different

flow regimes. Hence, the primary focus in this study is on the two general types of modes,

i.e. tilted and purely zonal.

Although the propagation speeds of the J and Z modes do not vary significantly

across different simulations, the J mode seems to feel some impact due to the presence

of the Z mode, as the J mode propagates slower in the numerical solutions in which

the flow field has a relatively higher contribution from the Z mode (see table 5.2). The

differences in the propagation speeds of the J mode are quite small across different simu-

lations; however, the differences are not explained by the linear dispersion relation. The

linear dispersion relation shows negligible changes in the propagation speeds for different

magnitudes of the eddy viscosity and bottom friction parameters (not shown). It is most

likely that these differences are due to nonlinear effects. In addition, the fraction of the

mean barotropic KE increases as the contribution of the Z mode increases (see also the

discussion of table 5.1). The barotropic component of the flow is expected to become

stronger with a reduction in the magnitude of the bottom friction parameter (Arbic and

Flierl, 2004a). However, it is not clear how the presence of the zonal mode is linked to

the vertical flow structure.
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Variance (%) Velocity (cm s−1)

ν (m2s−1) J Z J Z fBT

200 80.6 0 −0.06̂i −0.48ĵ - 0.30

150 81.6 0 −0.06̂i −0.48ĵ - 0.33

100 66.8 9.2 −0.06̂i −0.46ĵ 1.56ĵ 0.45

75 53.0 15.1 −0.05̂i −0.41ĵ 1.48ĵ 0.49

50 26.6 12.4 −0.05̂i −0.38ĵ 8.58ĵ 0.59

Table 5.2: Variances and propagation velocities of the J and Z modes for different values of eddy viscosity (ν)
in simulations run with Tx = 1.4×10−12 m−1s−1 and γ = 2×10−8 s−1. The rest of the parameters were kept
the same in the simulations (see table 2.1). î and ĵ are the zonal and meridional unit vectors, respectively.
fBT = EBT /(EBT + EBC) is the the mean barotropic KE fraction, where EBT = 1/2

∫
A
|uBT |2 and

EBC = 1/2
∫
A
|uBC |2 are the barotropic and baroclinic KE, respectively, integrated over the whole domain.

Variance (%) Velocity (cm s−1)

γ (s−1) J Z J Z fBT

4× 10−8 80.2 0 −0.06̂i −0.46ĵ - 0.38

2× 10−8 66.8 9.2 −0.06̂i −0.46ĵ 1.56ĵ 0.45

10−8 47.6 25.2 −0.05ĵ −0.42ĵ 1.56ĵ 0.47

Table 5.3: Variances and propagation velocities of the J and Z modes for different values of bottom friction
(γ) in simulations run with Tx = 1.4×10−12 m−1s−1 and ν = 100 m2 s−1. The rest of the parameters were kept
the same in the simulations (see table 2.1). î and ĵ are the zonal and meridional unit vectors, respectively.
fBT = EBT /(EBT + EBC) is the the mean barotropic KE fraction, where EBT = 1/2

∫
A
|uBT |2 and

EBC = 1/2
∫
A
|uBC |2 are the barotropic and baroclinic KE, respectively, integrated over the whole domain.

In order to understand the impacts of eddy viscosity on the dynamics and investigate

why the contribution of the Z mode in the flow field tends to be enhanced in weak

dissipation flow regimes, we first analyse the two-dimensional KE spectrum (figure 5.2).

We compare the KE spectra computed using the flow fields in ν = 200 and 50 m2s−1

cases. Since the Z mode is only observed in the latter case (see table 5.2), we can analyse

the differences in the KE spectra. From a visual inspection of figure 5.2, it is quite

evident that the Z mode possesses a significant amount of energy in the bottom layer in

the lower eddy viscosity case. This indicates that the vertical flow structure tends to be

more barotropic in the presence of the Z mode. This also agrees with the observations

from the EOF analysis (tables 5.1-5.3). Another important aspect to note is that many

different spatial scales seem to be active in the lower eddy viscosity case (especially in

the bottom layer in figure 5.2). The KE spectra show that, in the lower eddy viscosity

case, additional Fourier modes possess significantly more energy than in the higher eddy

viscosity case (compare top and bottom panels in figure 5.2). These additional Fourier

modes are present at relatively smaller spatial scales (or larger wavenumbers) than the

J and Z modes. It is possible that these additional energetic Fourier modes are able to

exchange energy with the J and Z modes. We hypothesise that these small-scales interact
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Figure 5.2: KE spectrum (units are in cm2s−2) averaged over 2,000 days (100 snapshots between 18,000-
20,000 days); (a,b) ν = 200 m2s−1 and (c,d) ν = 50 m2s−1. The zonal and meridional wavenumbers are
denoted by (kx, ky). Green and red dots represent the wavenumbers corresponding to the J and Z modes,
respectively. In the lower eddy viscosity case, the J and Z modes seem to interact nonlinearly and possibly
exchange energy.

with the J mode, which is directly forced by the imposed background shear (Khatri and

Berloff, 2018a), and feed energy to the Z mode in the lower eddy viscosity case.

In order to confirm the hypothesis, a test numerical simulation was run in which

the background flow, eddy viscosity and bottom friction parameters were set to zero. The

model was initialised using the reference solution from the ν = 200 m2s−1 case and the

simulation was run for 10,000 days. The evolution of the KE spectrum is shown in figure

5.3 and it can be clearly seen that many additional Fourier modes become more energetic.

Since the background flow is absent, these additional Fourier modes must have received

energy from the J mode through nonlinear interactions, as the J mode initially contained

most of the energy in the system. The system quickly attains an equilibrium state, in

which the Z mode contains most of the energy in the system and the J mode almost

disappears. This shows that these additional energetic Fourier modes efficiently interact

with the J and Z modes. As a result, mesoscale eddies are able to transfer energy to

meridional scales even larger than the meridional width of the J mode. In the case of

zonal jets over a flat bottom, the meridional width of the jets (known as the Rhines scale)

is generally set by available eddy energy and Rossby waves in the system (Rhines, 1975).

In other words, the upscale energy transfer from eddies is halted at the scale equal to
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the meridional wavelength of the jets. However, the results in this study indicate that,

in the presence of topography, the meridional width of an alternating jet pattern need

not be bounded by the Rhines scale. Over topography, it may be possible to excite very

low meridional wavenumbers through interactions among various large-scale modes. It is

intriguing that the system evolves to purely zonal structures in the case of freely evolving

turbulence. It is not yet clear why only zonal patterns emerge and this needs to be further

investigated.
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Figure 5.3: Time evolution of the KE spectrum (snapshots, units are in cm2s−2) in the simulation in which
the background flow, eddy viscosity and bottom friction parameters were set to zero (a-e): KE spectra at 200,
400, 500, 600 and 800 days, respectively. The zonal and meridional wavenumbers are denoted by (kx, ky).
Green and red dots represent the wavenumbers corresponding to the J and Z modes, respectively.

Many studies have shown that eddy viscosity has an important role in ocean models

(Jochum et al., 2008; Arbic et al., 2013). The geostrophic turbulence theory predicts
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that most of the KE (enstrophy) flows upscale (downscale) from the energy injection

scale, which generally corresponds to the scale of baroclinic instability in the system

(Rhines, 1979). In the energy equilibrium state, most of the energy and enstrophy are

dissipated through bottom friction and viscous dissipation, respectively. Thus, in ocean

models, the viscous term is required to dissipate enstrophy at the grid scale. However,

eddy viscosity also dissipates energy at small scales and this is not accounted for in the

geostrophic turbulence theory (Rhines, 1979). This effectively damps out the small-scale

eddy activity and suppresses the upscale energy transfer by eddies. The results in this

work show that, for sufficiently small values of the eddy viscosity parameter, tilted jets

formed over topography by the action of mesoscale eddies can become unstable and feed

energy to even larger flow structures. The investigation into this upscale energy transfer

to meridional scales larger than the Rhines scale has received little attention. In section

5.4, we use linear stability analysis to study these effects.

5.3 Wave solutions for the Z modes

As seen in the previous section, the propagation velocities of the Z modes agree well with

the estimates from the linear dispersion relation. Also, the contribution of the Z mode

in the full flow field increases with decreasing the values of the dissipative parameters

(see tables 5.2,5.3). In fact, the flow field is dominated by purely zonal modes in the

case of freely evolving turbulence (figure 5.3). Here, we derive a simplified expression

for the propagation velocity of the Z modes using the linear dispersion relation. Since

the contribution from purely zonal modes is at maximum in the absence of forcing and

dissipative terms, we set Ub = ν = γ = 0 in equation (2.3) to obtain an approximate

dispersion relation (for a purely zonal mode, kx = 0)

ω(k2y + S1) −S1ω

−S2ω ω(k2y + S2)− kyTx


ψ̃1

ψ̃2

 ≈ 0. (5.1)

In order to derive an expression for the meridional phase speed for the Z modes, we

substitute ω = cwky, where cw is the phase speed of the wave, and solve the above matrix

for nontrivial solutions (only the nonzero solutions for cw are considered),

c2wk
2
y

[
(k2y + S1)(k

2
y + S2)− S1S2

]
− cwk2yTx(k2y + S1) ≈ 0, (5.2)

cw ≈
Tx(k

2
y + S1)

k2y(k
2
y + S1 + S2)

. (5.3)

The meridional velocity of a zonal mode increases linearly with the slope magnitude

and decreases roughly as 1/k2y (for k2y << S1 + S2 or k2y >> S1 + S2). This relationship
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agrees well with the propagation speeds of the Z modes estimated from the nonlinear

numerical simulations (see table 5.1). For example, the ratio of the propagation speeds of

the Z mode in Tx = 2.1×10−12 and Tx = 2.8×10−12 m−1s−1 cases is 0.73, which matches

the ratio of the slope magnitudes in the two cases. Similarly, in ν = 100 and ν = 50

m2s−1 cases in table 5.2, the ratio of the propagation speeds of the Z mode is about one

fifth and the ratio of the squares of the meridional wavenumbers corresponding to the Z

mode is four. Thus, the simple expression predicts the propagation speeds of the Z mode

reasonably well.

5.4 Linear stability analysis

As shown in section 5.2, in weak dissipation regimes, many energetic Fourier modes appear

at relatively smaller scales than the J and Z modes, and this results in an increase in the

energy exchange among different Fourier modes through nonlinear interactions. In order

to understand the effects of the dissipative parameters on the stability of these additional

Fourier modes, we perform linear stability analysis around the time-mean propagating

state of the tilted jets, which correspond to the J mode in our study. Similar to the

technique used in chapter 3, we use a propagating frame of reference such that the jets

are exactly zonal and stationary in it (see figure 3.3). The governing equation (3.3) was

linearised around the time-mean tilted jets. The streamfunction field was then represented

as a sum of the mean and perturbation terms, ψi(p, q, t) = ψi(q) + ψ′i(p, q, t), and the

nonlinear terms in perturbations were neglected. The final equations in terms of ψ′i are

(see the full derivation in appendix A.4):

∂

∂t

[
∇2ψ′i + εiSi(ψ

′
2 − ψ′1)

]
+

[
Ai

∂

∂p
+Bi

∂

∂q

] [
∇2ψ′i + εiSi(ψ

′
2 − ψ′1)

]
+Ci

∂ψ′i
∂p

+Di
∂ψ′i
∂q

= ν∇4ψ′i − δi2γ∇2ψ′i, (5.4)

where
A1 = Ub cos θ + u1,

A2 = u2,

B1 = −c− Ub sin θ,

B2 = −c,
C1 = (β + S1Ub) cos θ − u′′1 + S1(u1 − u2),
C2 = (β − S2Ub) cos θ − Tx sin θ − u′′2 + S2(u2 − u1),
D1 = −(β + S1Ub) sin θ,

D2 = −(β − S2Ub) sin θ − Tx cos θ.



(5.5)

Here, i = 1 (i = 2) denotes that top (bottom) layer, δij is the Kronecker delta and

ε1 = −ε2 = 1. The tilt angle, θ, and drift speed of the frame of reference, c, are equal

to the tilt angle and drift speed of the J mode, which were estimated using the EOF
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analysis. ui = −∂ψi/∂q and u′′i are the mean flow (averaged in p direction) and its double

derivative in q direction (shown in figure 5.4), respectively. The streamfunction data for

the last 10,000 days in the simulation corresponding to figure 5.1 was used to compute

the time-mean streamfunction field in the moving frame of reference and the time-mean

streamfunction field was further averaged along direction p. The cross-jet profile of the

time-mean streamfunction field was then used to generate the cross-jet profiles of ui and

u′′i .
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Figure 5.4: Profiles of ui and u′′i used in the stability analysis. The profiles were computed by applying spatial
and time averaging in the direction along the jets in the moving frame of reference between 10,000-20,000
days for the simulation corresponding to figure 5.1 (blue solid line in the top layer and red dotted line in the
bottom layer). The velocity profile in the top layer is shown relative to the imposed background flow of 0.06
m s−1.

The system of equations (5.4) can be solved as the coefficients Ai, Bi, Ci and Di are

known, and the only unknown parameters are ψ′1 and ψ′2. We used Fourier decomposition

in p direction, i.e. along the jets, and finite-difference discretisation with 512 grid points

in q direction. We assumed solutions of the kind ψ′i = ψ̃i(q)e
j(lp−ωt) for the perturbation

terms. l is the wavenumber in p direction and periodic boundary conditions were used

at the endpoints in q direction. This substitution results in an eigenvalue problem. The

eigenvalue problem was solved for each wavenumber l separately and the analysis was

repeated for different magnitudes of the eddy viscosity and bottom friction parameters

for the same time-mean cross-jet flow profiles (details are in appendix A.4). This is similar
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to the method used in Berloff et al. (2011); Berloff and Kamenkovich (2013a), but in the

presence of topography.

       

 

0.02

 

0.06

 

0.1

       

 

0.02

 

0.06

 

0.1

       

 

0.02

 

0.06

 

0.1

 -0.02  0  0.02  

 

0.02

 

0.06

 

0.1

       

 

 

 

 

 

 

       

 

 

 

 

 

 

       

 

 

 

 

 

 

 -0.02  0  0.02  

 

 

 

 

 

 

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Figure 5.5: Real parts of eigenvalues (ωr) obtained from the linear stability analysis for different values of
eddy viscosity (left panels, for fixed γ = 2 × 10−8 s−1) and bottom friction (right panels, for fixed ν = 100
m2s−1) vs wavenumber. Growth rates (day−1) are shown in the colorbar. Eigenmodes having growth rates in
the range [-0.01,0) are shown with grey dots. Growth rates increase with decreasing ν and γ.

Frequencies obtained by solving the eigenvalue problem are shown in figure 5.5 for

different magnitudes of the eddy viscosity and bottom friction parameters. It can be

seen that eddy viscosity tends to stabilise the eigenmodes at all wavenumbers as the

growth rates of the eigenmodes reduce with increasing the value of the eddy viscosity

parameter. In fact, in the lower viscosity cases, many weakly unstable eigenmodes appear,

which otherwise had negative growth rates (at wavenumbers smaller than 0.02 km−1).

These weakly unstable eigenmodes are present at relatively smaller wavenumbers than the

wavenumbers of fastest growing mesoscale eddies, which are in the wavenumber range 0.02-

0.03 km−1. With a reduction in the value of the bottom friction parameter, the changes

in the growth rates are less visible, but the growth rates do increase with decreasing γ. A

few unstable modes can be seen appearing in the cases of weaker bottom friction (compare

plots for γ = 4×10−8 and γ = 2×10−8 s−1). Looking at the spatial structure of the fastest

growing mode (figure 5.6), we find that the banana-shaped eddies are very similar to the
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Figure 5.6: (a) The eigenvector corresponding to the fastest growing mode (b) Snapshots of the eddy field
constructed using all EOFs except EOF1 and EOF2. Top and bottom panels correspond to the top and
bottom layers, respectively. The snapshot of eddy field was constructed using the solution from the simulation
run with ν = 150 m2 s−1 (other parameters were the same as shown in table 2.1). In this case, there is a
remarkable resemblance in the spatial structure between the eddy field and the fastest growing eigenmode.
These banana-shaped eddies were also seen in the lower viscosity simulations; however, the banana-shaped
structures appear less frequently because the eddy field tends to very complex in the presence of the Z mode.

eigenfunctions corresponding to the fastest growing mode in a flat-bottom case (see figure

13 in Berloff et al. (2011)). In fact, there is a good match between the banana-shaped

eigenmode and eddy field reconstructed using all EOFs except the EOFs corresponding

to J mode. This shows that the linear stability analysis is helpful in understanding the

jet dynamics, even though the solutions considered in this study are highly nonlinear.

It is important to note here that, in the presence of the mean flow, even eigenmodes

at very low wavenumbers have positive growth rates; however, the growth rates are very

small. The presence of many weakly growing large-scale eigenmodes indicates that these

eigenmodes can interact and exchange energy, as they can remain in the system for a

sufficiently long time without dying. These results also suggest that, given the large-

scale eigenmodes are weakly growing, the Z mode observed in some simulations must

have received energy through nonlinear interactions among different eigenmodes, which

can also be inferred from the KE spectrum contours in figure 5.2. The linear stability

analysis shows that all eigenmodes are significantly damped due to eddy viscosity and

there are fewer unstable modes present in the case of strong eddy viscosity. Consequently,

the number of nonlinear interactions can reduce due to the presence of fewer energised

eigenmodes and the efficiency of energy exchange among different eigenmodes can decline.

This suggests that nonlinear interactions may have been suppressed in the simulations

having strong dissipation and this can explain the absence of the Z mode in the EOF

analysis in some cases (see table 5.2 for ν = 150, 200 m2s−1 cases). It is possible that,

in the simulations having strong viscous dissipation, there may not have been enough

interactions to feed energy to the Z mode.
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It is counterintuitive that, in the presence of the sloped topography, the system

develops zonally elongated modes, which have meridional wavelengths longer than the

meridional width of the tilted jets. Over a flat bottom, the β-effect leads to strong

anisotropisation resulting in the formation of zonal jets, where the meridional width of

the jets is set by a balance between nonlinear advection and Rossby waves (Rhines, 1975).

Even in the presence of the sloped topography, the jets are initially formed by the action

of mesoscale eddies and, later, the jets start to gain energy directly from the imposed

vertical shear (see the discussion of figure 3.7). Hence, in a way, the width of the tilted

jets is set by eddies and Rossby waves. However, the inhibition of the inverse energy

transfer to meridional scales longer than the Rhines scale by Rossby waves is more of an

indirect effect (Sukoriansky et al., 2007). The upscale energy transfer stops at the Rhines

scale because, in order to transfer energy to lower meridional wavenumbers, the triad

interactions would involve two almost parallel Fourier modes and such triad interactions

are quite inefficient (Vallis and Maltrud, 1993). On the other hand, in the presence of

the sloped topography, both zonal and tilted large-scale modes are present, as seen in the

EOF analysis and two-dimensional KE spectra. We believe that the presence of many

large-scale modes makes it possible to have efficient nonlinear interactions and transfer

energy to meridional scales larger than the jet width. This could be the main reason why

the Z mode is able to receive a significant amount of energy in the simulations.

In our analysis, we mainly discussed indirect evidence of efficient nonlinear inter-

actions over topography using the two-dimensional KE spectra, in which we observed a

significant increase in the number of nonlinear interactions in weak dissipation regimes.

It may also be possible to test this hypothesis directly. One could try to identify the

triads in which the Z mode gains energy or the J mode loses energy and compute energy

exchange rates as a function of the magnitudes of the eddy viscosity and bottom friction

parameters. The main issue with this kind of approach is that identifying all such triads,

in which the Z mode gains energy or the J loses energy, is quite difficult. Also, it is

difficult to confirm if the energy lost from the J mode ends up in the Z mode. The J

mode need not transfer energy directly to the Z mode and it may take few interactions

for the energy to reach the Z mode. Identifying specific triads is much more difficult than

looking at the overall energy exchange at different wavenumbers, which is the general

practice (e.g. see Khatri et al., 2018). There have been some efforts to compute energy

exchanges in specific triads to understand the energy transfer process (Dar et al., 2001);

however, the problem still remains quite difficult to tackle. This is beyond the scope of

this thesis.

51



5.5 Summary

In this chapter, we studied the dynamics of tilted jets, which gain energy directly from

the imposed vertical shear, in weak dissipation regimes and also in the freely evolving

turbulence regime. We find that, in addition to the tilted jets, many large-scale modes,

which were extracted using the EOF analysis, coexist in the system. All of these large-

scale scales modes possess spatiotemporal variability and can be broadly categorised into

two families: the first family of tilted modes and the second family of purely zonal modes.

The relative contributions of these modes to the full flow field are greatly affected by the

magnitudes of the dissipative parameters. As we decrease the dissipation strength, the

flow field tends to be dominated by purely zonal modes, which propagate meridionally and

the propagation speed increases linearly with the slope magnitude and decreases roughly

as the square of the meridional wavenumber. The analysis of the two-dimensional KE

spectra show that these large-scale modes and mesoscale eddies can interact efficiently

and exchange energy. As a result, the tilted jets lose energy to purely zonal modes.

However, strong viscous dissipation tends to kill small-scale eddy activity resulting in the

suppression of these nonlinear interactions, which we confirmed using the linear stability

analysis performed around the time-mean state of the tilted jets in a moving frame of ref-

erence. These results suggest that, in the presence of topography, alternating jet patterns

can also be formed via interactions among various large-scale modes and the meridional

width of the jets need not follow the Rhines scaling (Rhines, 1975).
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6
Role of eddy fluxes in the

maintenance of jets

The contents of this chapter have been published in the research article titled “Role of

eddies in the maintenance of multiple jets embedded in eastward and westward baroclinic

shears” in the Fluids journal (Khatri and Berloff, 2018b).

Mesoscale eddies interact with jets via exchanges of eddy momentum and buoyancy.

In chapter 3, we observe that components of the eddy forcing term, i.e. Reynolds stress

term and form stress term, affect the jets in different ways. In this chapter, we assess

the impacts of eddy relative vorticity and buoyancy fluxes separately on zonal jets by

analysing the time-mean potential vorticity (PV) budget in two-layer quasi-geostrophic

(QG) simulations over a flat bottom. Another reason for studying the eddy vorticity

and buoyancy effects separately is that the jet dynamics in a baroclinic QG model is

significantly different from the jet dynamics in a barotropic QG model (Thompson and

Young, 2007; Berloff et al., 2009a,b). For example, the rates of energy transfer to the

mean zonal flow in individual layers via up-gradient momentum fluxes are significantly

different, even in the case of a predominantly barotropic flow structure (Thompson and

Young, 2007). In contrast to the previous chapters, in this chapter, both eastward and

westward background shears have been considered, as oceanic jets can be formed in the

presence of both types of background shears at different geographical locations, e.g., jets in

oceanic midlatitude gyre circulations. It has been observed that the roles of eddy fluxes

depend on the direction of the imposed vertical shear and this can lead to differences

in the behaviour of barotropic-baroclinic (BT-BC) interactions (Berloff et al., 2009a,b,

2011). However, there is no clear understanding of how these differences arise due to a

change in the direction of the mean vertical shear.
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In this chapter, we compare our results with some of the previous studies that fo-

cused on the role of BT-BC interactions on the dynamics of jets. Here, we prefer to analyse

the role of eddy fluxes in individual layers over using the BT-BC flow decomposition be-

cause, in the presence of the imposed vertical shear, the vertical eigenmodes have mixed

barotropic-baroclinic structure (Berloff and Kamenkovich, 2013a,b). Assessing the role of

eddies in terms of interacting barotropic and baroclinic modes is difficult and the inter-

pretation of the dynamics in terms of the vertical modes can sometimes be misleading.

Nevertheless, we compare the results with the previous works that studied the impacts

of eddies on the barotropic and baroclinic flow structures of jets (Berloff et al., 2009a,b).

We argue that the roles of the eddy fluxes are the same in systems forced with eastward

and westward vertical shears, and the overall dynamics is largely the same. However, in

terms of vertical modes, the eddy effects may look different.

6.1 Dynamics of zonal jets and eddies

Here, we mainly focus on the roles of the Reynolds stress term and form stress term in the

maintenance of jets (see equations (3.7-3.8)). For this purpose, we analyse the dynamics of

jets and eddies over a flat bottom in systems forced with either an eastward or a westward

vertical shear. For an eastward shear (ES), we imposed a background flow of 6 cm s−1 in

the upper layer, whereas background flow of −4 cm s−1 was imposed in the upper layer

to create a zonal westward shear (WS). Also note that, in the two-layer QG simulations

used in this chapter, we used a rectangular domain having an area of 3000 × 1500 km2

with 1024×512 grid points and used periodic boundary conditions on all four sides of the

domain. Also, we used β = 1.6× 10−11 m−1s−1, which corresponds to a reference latitude

of 45◦, and ν = 25 m2s−1. The rest of the parameters were kept the same as shown in

table 2.1. Similar to the simulations discussed earlier, we initialised the model from a

perturbed state. The system quickly developed multiple jets and reached a statistical

equilibrium state by 6-7 years (see section 2.3 for details). We ran the simulations for 20

years and used the last 10 years of data (about 180 snapshots) for computing the eddy

fluxes and eddy forcing. The details are discussed in the next section.

In figure 6.1, the meridional profiles of the zonal velocity (averaged over the last

10 years as well as in the zonal direction) are shown. In both the ES and WS cases,

alternating jets are present and the eastward jets are sharper than the westward jets.

Also, the vertical flow structure is predominantly barotropic as we kept the strength of

bottom friction quite weak, i.e. γ = 2× 10−8 s−1 (see section 2.1). However, there is one

important difference between the two cases. In contrast to the ES case, the bottom layer is

more energetic in the WS case and the jets are stronger in the bottom layer in comparison

to the top layer. As a consequence, the mean barotropic, H1u1+H2u2
H1+H2

, and baroclinic, u1−u2,
flow components are of opposite phases in the WS case. These observations are important
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Figure 6.1: Adopted from Khatri and Berloff (2018b). Meridional profiles of the zonal velocity in the top and
bottom layers (averaged in the zonal direction and time for the last 10 years); (a) ES and (b) WS. Dashed
and dash-dotted curves represent the mean barotropic (H1u1+H2u2

H1+H2
) and baroclinic (u1 − u2) components in

the flow field, respectively.

in understanding the eddy dynamics and this is further discussed later in this chapter.

Similar to the technique adopted in chapter 3, we use the Reynolds decomposition

to study the impacts of the Reynolds stress term and form stress term on the zonal jets.

We decompose the flow field into the zonally averaged time-mean flow (ψi = 1
TLx

∫
t

∫
x
ψi,

where T and Lx are the total time-period of averaging and the zonal extent of the domain,

respectively) and transient eddy field (ψ′i = ψi − ψi). We use this decomposition in

equation (2.1) and then average the equation in time as well as in the zonal direction.

The resulting equations are given as

∂

∂t

[
∇2ψi + εiSi(ψ2 − ψ1)

]
︸ ︷︷ ︸

qi

= −∇ · (u′iζ ′i)︸ ︷︷ ︸
Rsi

−εiSi∇ · (u′i(ψ′2 − ψ′1))︸ ︷︷ ︸
Fsi

+ν∇2ζ i − δi2γζ i, (6.1)

where u = (u, v) = (−∂ψ
∂y
, ∂ψ
∂x

) and ζ = ∇2ψ (ψ is the velocity streamfunction) are the

velocity and relative vorticity, respectively. i = 1 (i = 2) indicates the top (bottom) layer,

δi2 is the Kronecker delta and ε1 = −ε2 = 1. The overbar represents the mean in time as

well as in the zonal direction. qi represents the layer-wise mean PV of the developed flow.

The first two terms on the right-hand side (RHS) are convergence of eddy relative vorticity

and eddy buoyancy fluxes in each layer. We refer to these eddy flux convergence terms
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as Reynolds stress term (Rsi) and form stress term (Fsi). Depending on the sign, the

stress terms can either sharpen or flatten the mean PV profile resulting in strengthening

or weakening of the zonal jets (in this chapter, ‘mean PV’ is used to refer to the PV of the

developed mean flow only). The sum of the Reynolds stress term and form stress term is

generally referred to as ‘eddy forcing’ and, overall, the eddy forcing term is responsible

for maintaining the zonal jets. The rest of the terms on the RHS remove energy from

the system through viscous dissipation and bottom drag. In the time-mean, the time

derivative of the mean PV vanishes and is kept only for clarity.

6.2 Reynolds and form stress terms

In order to understand how the Reynolds stress term and form stress term affect the mean

zonal flow, we compare the meridional profiles of the eddy stress terms and mean PV in

each layer. In a baroclinic QG model, both relative vorticity and buoyancy contribute

to the mean PV (see equation (6.1)). Thus, in order to make the comparison easier, we

investigate the effects of individual stress terms on the mean relative vorticity and mean

buoyancy separately. For this purpose, we computed correlation coefficients between the

meridional profiles of the mean relative vorticity and mean buoyancy (note that buoyancy

contribution due to the imposed background flow is not included) and the eddy stress

terms.

The meridional profiles for both the ES and WS cases are shown in figure 6.2.

The first important aspect to notice is that, in both cases, the Reynolds stress term is

positively correlated with the mean relative vorticity profile in both layers (see table 6.1

for the correlation coefficients); thus, the Reynolds stress term forces the jets in the entire

fluid column. In this scenario, eddies deposit momentum into the mean zonal flow and

this process of up-gradient eddy momentum transfer is generally described as negative

viscosity effect (Manfroi and Young, 1999; Dritschel and McIntyre, 2008). Indeed, the

Reynolds stress terms in the top and bottom layers differ in strength and this is due to

the importance of the baroclinic effects (Thompson and Young, 2007). In the ES case,

the Reynolds stress term is more than five times stronger in the top layer than in the

bottom layer. On the other hand, in the WS case, the Reynolds stress term is stronger

in the bottom layer. The layer that experiences a stronger Reynolds stress term tends to

be the more energetic layer (see figure 6.1). We discuss this aspect in detail later in the

chapter.

On the other hand, the form stress term is negatively (positively) correlated with

the mean buoyancy profile in the ES and WS cases (see table 6.1), respectively. This

indicates that the form stress term has opposite effects on the mean zonal flow in the two

cases. However, we argue that the behaviour of eddies is the same in both cases. A simple

way to understand this is to look at the role of bottom friction in the system. Bottom
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friction is the only large-scale energy sink in the model, which acts on the bottom layer.

In both cases, eddies transfer momentum from the top to the bottom layer via the form

stress term and this eddy momentum is then balanced by the bottom friction term. In

the ES case, the mean flow in the top layer is stronger than the mean zonal flow in the

bottom layer; hence, the eddy momentum transfer from the top to the bottom layer acts

against the mean vertical shear (u1−u2) in the system. Consequently, the form stress term

acts opposite to the mean buoyancy in the system. This is similar to the case of Earth’s

atmosphere where baroclinic eddies transfer momentum from the middle atmosphere to

the surface, which is then balanced by surface friction and the surface westerlies are

produced (Edmon Jr et al., 1980). In contrast, in the WS case, the eddy momentum

transfer from the top to the bottom layer tends to enhance (reduce) the strength of the

mean zonal flow in the bottom (top) layer.

ES WS

Layer C(∇2ψi, Rsi) C(εiSi(ψ2 − ψ1), Fsi) C(∇2ψi, Rsi) C(εiSi(ψ2 − ψ1), Fsi)

Top 0.89 −0.90 0.83 0.92

Bottom 0.08 −0.90 0.89 0.92

Table 6.1: Correlation coefficients, C, computed by correlating the meridional profiles of the mean relative
vorticity and buoyancy with the meridional profiles of the Reynolds stress term and form stress term. i = 1
(i = 2) indicates the top (bottom) layer and ε1 = −ε2 = 1.

In order to further confirm that the behaviour of eddies is the same in the two cases,

we computed eddy heat diffusivity. In general, eddies tend to flatten the isopycnals as

eddies extract energy from the available potential energy. As a consequence, the eddy

buoyancy fluxes are down-gradient and this results in a positive heat diffusivity coefficient.

In our study, we computed the heat diffusivity (µh) using the following relation (also see

equation 3.9)

µh =
v′i(ψ

′
2 − ψ′1)

u2 − u1 − Ub
, (6.2)

where v′i and ψ′i are eddy meridional velocity and eddy streamfunction, respectively, in ith

layer. ui and Ub are the mean zonal flow and imposed background flow, respectively, and

the overbar represents the mean in time as well as in the zonal direction. Note that the

profiles of the heat diffusivity are the same in both layers as the layer-wise heat diffusivity

expressions are mathematically equivalent. The meridional profiles of the heat diffusivity

are shown in figure 6.3. In both the ES and WS cases, the heat diffusivity coefficients

are positive and are of similar magnitudes. This confirms that the eddy buoyancy fluxes

are down-gradient, which is in agreement with the theoretical expectations. However,

there is an important difference in the heat diffusivity profiles. The locations of the heat

diffusivity maxima relative to the jets are different in the two cases. In the ES case, the

heat diffusivity coefficient is largest near the flanks of the eastward jets whereas, in the
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Figure 6.2: Adopted from Khatri and Berloff (2018b). Meridional profiles of the Reynolds stress term (solid
blue) and form stress term (solid green) in the top (a,c) and bottom (b,d) layers. Left (a,b) and right (c,d)
panels are for the ES and WS cases, respectively. The dashed curves represent the meridional profiles of the
mean relative vorticity (dashed light green) and mean buoyancy (dashed orange). The profiles were averaged
in the zonal direction as well as in time for the last 10 years. Additionally, the profiles of the stress terms were
smoothened by applying moving averages in the meridional direction.

WS case, the maxima in the heat diffusivity profile coincide with the westward jet cores.

This difference is due to the opposite directions of the imposed vertical shears in the two

cases as the rest of the parameters are the same in both cases. However, we do not focus

on this aspect in this thesis. Overall, the ES and WS cases are similar as eddies tend to

flatten the isopycnals via down-gradient eddy buoyancy fluxes, although the locations of

the heat diffusivity maxima are different.

We could also investigate how the form stress term affects the mean relative vorticity

profile or the Reynolds stress term affects the mean buoyancy profile. However, these

effects are not independent of what has been described above. For example, eddies transfer

momentum from the top layer to the bottom layer via the form stress term; thus, the form
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Figure 6.3: Adopted from Khatri and Berloff (2018b). Meridional profiles of heat diffusivity; (a) ES and (b)
WS. The dash-dotted curves represent the meridional profiles of the mean zonal flow (averaged for the last 10
years) in the layers. A positive value of heat diffusivity indicates that eddy buoyancy fluxes are down-gradient.

stress term tends to reduce the strength of the mean flow in the upper layer and tends

to enhance the mean flow strength in the lower layer. These effects are clearly captured

in figure 6.2 as the form stress term is negatively (positively) correlated with the mean

relative vorticity profile in the top (bottom) layer. In a similar manner, the Reynolds

stress term has a positive (negative) correlation with the mean buoyancy in the more

(less) energetic layer, which is consistent with the arguments given above. Eddies are

responsible for maintaining the jets; thus, in the overall balance, the eddy stress terms

drive the jets. In both the ES and WS cases, the Reynolds stress term forces the mean

zonal flow in both layers whereas the form stress term transfers momentum from the top

to the bottom layer. In a statistical equilibrium state, this additional momentum in the

bottom layer is balanced by bottom friction. In essence, our layer-wise analyses show that

the overall dynamics is largely the same in both the ES and WS cases.

6.3 Zonal energy balance

We further analyse the energy exchanges between the zonal jets and eddies in individual

layers. For this purpose, we derive the time-mean zonal energy balance by multiplying

−ψi (overbar indicates the time-mean) to equation (2.1) and then averaging over the
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whole domain (denoted by 〈.〉) as well as in time (we followed the same steps as shown in

Appendix A.3 to derive the energy equations),〈
1

2

∂

∂t
u2i +

Si
2

∂

∂t
ψ

2

i

〉
+

〈
−δi1S1ψ1
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− δi2S2ψ2
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〉
=

〈
∂ui
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u′iv
′
i − εiSiuiψ′1

∂ψ′2
∂x
− ν(

∂ui
∂y

)2 − δi2γu22

〉
, (6.3)

where εi and δij are the same as defined in equation (6.1). The first two terms on the RHS

in equation (6.3) represent the energy exchange between the jets and eddies in individual

layers. The first term captures the energy transfer from eddies to the mean zonal flow

via up-gradient momentum fluxes in each layer. We refer to this term as ‘Reynolds stress

correlations (RSC) term’, which basically represents the transfer of kinetic energy from

eddies to the mean zonal flow. There is also a transfer of energy in the vertical direction

as the upper and lower layers continuously interact. The second term on the RHS in

equation (6.3) captures the energy exchange between individual layers via eddy buoyancy

effects. We refer to this term as ‘form stress correlations (FSC) term’ from here onwards.

The rest of the terms on the RHS in equation (6.1) represent the loss of the mean zonal

energy through eddy viscosity and bottom friction. A single energy balance equation can

be derived for the zonal mean flow. In order to do that, we multiplie the above layer-wise

energy equation by Hi and then added the equations. The final energy equation is given

as

∂

∂t

〈
2∑
i=1
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2
u2i +

H1S1

2
(ψ1 − ψ2)

2

〉
=

〈
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u′iv
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∂ψ′2
∂x

〉
〈
−ν

2∑
i=1

Hi(
∂ui
∂y

)2 − γH2u
2
2

〉
. (6.4)

In the statistical equilibrium, the sum of the domain integrated kinetic energy and

potential energy in the system is conserved and the terms on the RHS in equation (6.4)

exactly balance each other (see table 6.2). In both the ES and WS cases, the mean zonal

flow gains energy through the RSC terms in both layers and bottom friction removes most

of the energy from the system. In both cases, the FSC terms transfer energy from the

upper to the lower layer. This is in agreement with our hypothesis that eddies always

transfer momentum from the top to the bottom layer and, in an energy equilibrium state,

this additional momentum is dissipated through bottom friction. One important aspect

to consider is that the magnitudes of the RSC terms greatly differ in individual layers

and a similar disparity was also observed in the strength of the Reynolds stress terms (see

figure 6.1). We discuss this aspect in detail later in this chapter.

The meridional profiles of the RSC, FSC and dissipation terms in equation (6.3)

are shown in figure 6.4. The magnitudes of the terms significantly vary in the meridional
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ES

Layer
〈
Hiuiyu′iv

′
i

〉 〈
−εiHiSiuiψ′1ψ

′
2x

〉 〈
−Hiνu

2
iy

〉
〈−δi2Hiγu

2
i 〉

Top (i = 1) 11.42 −9.98 −0.56 −
Bottom (i = 2) 0.84 7.77 −0.84 −8.32

WS

Layer
〈
Hiuiyu′iv

′
i

〉 〈
−εiHiSiuiψ′1ψ

′
2x

〉 〈
−Hiνu

2
iy

〉
〈−δi2Hiγu

2
i 〉

Top (i = 1) 0.77 −0.86 −0.11 −
Bottom (i = 2) 3.18 0.97 −0.40 −3.56

Table 6.2: Energy exchange between the mean zonal flow and eddies through the RSC and FSC terms, and
energy loss through viscous dissipation and bottom friction terms (averaged over the whole domain and time
for the last 10 years) in the top and bottom layers. The units are in 10−7 m3s−3. δij is the Kronecker delta
and ε1 = −ε2 = 1.

direction and this is strongly correlated with the meridional profile of the mean zonal

flow. For example, the RSC terms are strongest in the regions of the eastward jets as

eddies deposit momentum into the eastward jet cores. On the other hand, the FSC terms

act against the eastward jets in the more energetic layer and force the mean zonal flow

in the less energetic layer in both the ES and WS cases. Although the effects of the

layer-wise FSC terms on the zonal jets look opposite in the ES and WS cases, the overall

energy transfer via the FSC terms is still from the top to bottom layer (see table 6.2).

The majority of this energy gain in the lower layer is dissipated through bottom friction.

Hence, the overall impact of eddy buoyancy fluxes is the same in both the ES and WS

cases. Eddies transfer energy from the top to the bottom layer where it is dissipated

through bottom friction.

6.4 Effect of bottom friction

Friction plays an important role in governing the ocean dynamics and greatly affects the

strength of large-scale ocean currents (Dewar, 1998). Berloff et al. (2011) studied the

impacts of bottom friction on zonal jets and ambient eddies in a baroclinic QG model

and found that bottom friction affects the vertical structure of the multiple jets. Here we

investigate how bottom friction affects the baroclinic structure of the flow (see equation

(6.1) for the bottom layer). It can be inferred from figure 6.2 that bottom friction has

opposite effects on the baroclinic structure in the ES and WS cases, as the meridional

profiles of the bottom friction term, −γ∇2ψ2, and baroclinic streamfunction, ψ1 − ψ2, are

positively (negatively) correlated in the ES (WS) case. This shows that bottom friction

tends to make the flow more baroclinic (barotropic) in the ES (WS) case.
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Figure 6.4: Adopted from Khatri and Berloff (2018b). Meridional profiles of the RSC, FSC and dissipation
terms; (a,b) ES (c,d) WS. uiy and ψ2x represent the meridional and zonal gradient of the mean zonal velocity
and bottom-layer streamfunction, respectively. Top and bottom panels correspond to the upper and lower
layers, respectively. The layer-wise mean zonal velocity is represented by dash-dotted curves. The profiles were
averaged in the zonal direction as well as in time for the last 10 years.

The difference can simply be understood by looking at the mean zonal velocity

profiles (figure 6.1). The jets are stronger in the top and bottom layers in the ES and

WS cases, respectively. This is because the top and bottom layers receive more energy

through the RSC terms in the two cases (see figure 6.4). In both cases, most of the energy

is dissipated through bottom friction (table 6.2), which primarily affects the flow in the

lower layer. Hence, bottom friction tends to enhance (reduce) the difference between the

mean zonal velocity magnitudes between the upper and lower layers in the ES (WS) case.

As a consequence, the vertical flow structure tends to be more baroclinic (barotropic) in

the ES (WS) case. Although the overall behaviour of eddies and dynamics are the same

in the ES and WS cases, the impact of bottom friction on the baroclinic structure is the

opposite.
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6.5 Comparison with previous studies

Our layer-wise analysis of the roles of eddy fluxes shows that the overall eddy dynamics re-

mains the same in systems forced with eastward and westward vertical imposed shears. In

contrast, some previous works have found that the direction of the imposed vertical shear

significantly affects the behaviour of eddy fluxes. For example, Berloff et al. (2009a,b)

used BT-BC decomposition in the time-mean PV balances and analysed the impacts of

nonlinear eddy stress terms on the barotropic and baroclinic structures of zonal jets.

They observe that the impacts of the Reynolds stress and form stress terms are opposite

in eastward and westward sheared systems. In the former, eddies tend to maintain the

baroclinic jets through the Reynolds stress term while the form stress term acts against

the baroclinic jets. In the latter case, on the other hand, the Reynolds (form) stress term

tends to destroy (maintain) the baroclinic structure of the zonal jets. Although the role

of eddy fluxes in the BT-BC analyses look significantly different in the two scenarios, we

argue that the overall eddy dynamics remains the same and the observed differences can

be understood by analysing the baroclinic flow structures in the ES and WS cases (see

figure 6.1).

The mean zonal velocities of the barotropic (H1u1+H2u2
H1+H2

) and baroclinic (u1 − u2)

flow components are in phase in the ES case, i.e., the maxima and minima in the mean

barotropic and baroclinic velocities occur at the same latitudes. In the WS case, the jets

are stronger in the lower layer as the jets receive more energy through the RSC term in the

lower layer. As a result, the barotropic and baroclinic components of the mean flow are in

the opposite phases. This reversal in the phase of the baroclinic flow component is the key

reason why the impacts of the Reynolds stress and form stress terms on the baroclinic

flow structure of the jets look opposite in systems forced with eastward and westward

vertical shears. In fact, even in this study, we make a similar observation. The meridional

profiles of the mean buoyancy and form stress term are negatively (positively) correlated

in the ES (WS) case (figure 6.2), even though eddies transfer momentum from the top

to the bottom layer in both cases. The same effect leads to a reversal in the impact

of bottom friction on the baroclinic flow structure, which is discussed in the previous

section. In order to avoid the reversal in the baroclinic flow component, one could define

the baroclinic mode on the basis of the energy of the mean zonal flow in the layers; e.g.,

ψ1 − ψ2 and ψ2 − ψ1 in the ES and WS cases, respectively. This approach would ensure

that the barotropic and baroclinic flow components are always in phase and the roles of

the eddy stress terms would be the same.

It is important to remember that, although the overall eddy dynamics is the same

in both the ES and WS cases, local eddy shapes and their meridional structure can still be

different in eastward and westward sheared systems (e.g. see the discussion in Berloff and

Kamenkovich, 2013a,b). In this work too, we observe that the maxima in the meridional
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profiles of eddy heat diffusivity in the ES and WS cases occur at different latitudes in

relation to the zonal velocity maxima of the jets. These differences may have important

implications in the oceans; however, studying the impacts of the vertical shear direction

on characteristics of eddy shapes is beyond the scope of this work.

6.6 Disparity in the upper and lower layer Reynolds stress correlations

We observe that the rates of the energy transfer to the zonal jets from eddies via the RSC

terms are significantly different between the upper and lower layers. In the ES case, the

upper-layer RSC term is larger in magnitude while, in the WS case, the lower-layer RSC

term dominates (table 6.2, meridional profiles of the RSC terms are also shown in figure

6.5). As a consequence, the layer receiving more energy through the RSC term tends to

be more energetic (see figure 6.1). This is in agreement with Thompson and Young (2007)

who found that the mean zonal flow receives almost all of the energy via the upper-layer

Reynolds stresses in a baroclinic QG model forced with an eastward velocity shear.

This strong disparity in the strength of the RSC terms is surprising because the

vertical flow structure is predominantly barotropic and the layers are not significantly

different in terms of kinetic energy levels (see figure 6.1). Thus, eddies are also expected

to be of similar magnitudes in the upper and lower layers. Given this, it is not obvious

why eddies are significantly more efficient in transferring momentum to the jets in one of

the layers. This indicates that the baroclinic flow structure is important for understanding

the jet dynamics as eddies transfer a significant amount of energy between the layers, and

this effect cannot be captured in a barotropic model. Also, despite imposing a westward

background flow in the upper layer, the lower layer tends to be more energetic in the WS

case. This shows that only the direction of the vertical shear is important. For example,

another way to create a westward vertical shear is to impose an eastward background flow

in the lower layer. In this scenario too, the lower layer would be more energetic.

Similar enhancement in the strength of Reynolds stresses is seen in Earth’s atmo-

sphere. It is well known that eddy momentum flux (EMF) convergence peaks in the upper

troposphere and its magnitude sharply decreases in the lower troposphere (see figure 1

in Ait-Chaalal and Schneider, 2015). It is believed that strong friction tends to reduce

eddy magnitudes near the surface resulting in a reduction in the EMF strength (Held,

2007; Vallis, 2017). The Earth’s atmosphere experiences an eastward vertical shear due

to more heating at the equator than at the poles and this is equivalent to the ES case

in this study. Ait-Chaalal and Schneider (2015) performed an idealised experiment in

which they heated the poles more than the equator resulting in a westward shear, which

is equivalent our WS case. They find that the EMF maxima shift to the lower tropo-

sphere, which is similar to the observations made in the WS case in our study, and the

results are not very sensitive to the strength of surface friction. Thus, it is unlikely that
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Figure 6.5: Adopted from Khatri and Berloff (2018b). Meridional profiles of layer-wise energy transfer from
eddies to the zonal jets through RSC terms (solid) and the meridional gradient in the layer-wise full PV (dash-
dotted); (a) ES (b) WS. uiy and qiy are the meridional gradient of the mean zonal velocity and mean PV,

respectively, and β∗i = β + εiSiUb (ε1 = −ε2 = 1) is the background PV gradient in ith layer. The profiles
were averaged in the zonal direction as well as in time for the last 10 years. The jets receive more energy
through RSC term in the upper (lower) layer in the ES (WS) case.

surface friction controls the EMF strength in the atmosphere. Ait-Chaalal and Schneider

(2015) further propose that the magnitude of EMF is associated with the absorption of

wave activity due to eddy-eddy interactions in the atmosphere. However, it still remains

unclear why the wave activity absorption tends to be much stronger in one part of the

atmosphere. It has been suggested that, in Earth’s atmosphere, the EMF maxima are

associated with greater magnitudes of meridional PV gradients in the upper troposphere

than in the lower troposphere (Held, 2007). However, the reasoning is not completely

satisfactory, as the magnitudes of meridional PV gradients change gradually with height

whereas EMF possess a sharp peak in the upper troposphere.

In order to better evaluate the role of eddies in the large-scale circulations of the

oceans and atmosphere, it is crucial to understand how eddies redistribute momentum

and what controls the strength of this momentum redistribution as a function of depth.

In our study, we observe that, in both cases, the layer having a positive background PV
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gradient in the meridional direction receives more energy through the RSC terms (figure

6.5). Further, in order to find out if the magnitudes of meridional PV gradients play

any role in controlling the strength of the RSC terms, we ran additional simulations in

which we imposed background flows of −3 and −5 cm s−1 in the upper layer, respectively.

As a result, we created a larger magnitude of the background meridional PV gradient

in the lower (upper) layer in Ub = −3 cm s−1 (Ub = −5 cm s−1) case. In all three

simulations (Ub = −3,−4,−5 cm s−1), we find that the RSC term in the lower layer tends

to be stronger resulting in more energetic lower layer. This is in contrast to the belief

that larger meridional PV gradients in the upper troposphere may be associated with the

enhanced EMF convergence (Held, 2007).

In order to understand this disparity in the upper and lower-layer RSC terms, we

analyse the layer-wise eddy momentum fluxes more carefully. The classical argument

says that stirring due to baroclinic eddies produces an eastward flow (see figure 17.2 in

Vallis, 2017). The eddy stirring generates Rossby waves that propagate away from the

region of stirring and carry energy with them. These Rossby waves eventually fade away

or break, and dissipate. Consequently, there is a strong convergence of eddy momentum

into the stirring region resulting in an eastward flow in the stirring region and a westward

flow in the wave breaking region (Dickinson, 1969; Thompson, 1971, 1980). The same

argument can be applied to the problem of multiple jets. We can infer from figure 6.5

that, in both the ES and WS cases, there is a convergence of eddy momentum into

the eastward jets in both layers as the RSC terms peak on the flanks of the eastward

jets. This indicates that the eastward jet cores (EJC) correspond to the eddy stirring

maxima and, on average, Rossby waves carry energy from the regions of the eastward

jets to the westward jet regions. Thus, the group velocity of Rossby waves is directed

away from the EJC as the direction of the energy propagation is along with the Rossby

wave group velocity. We analyse the layer-wise group velocity vectors and corresponding

eddy momentum transport in the linearised two-layer QG model. For simplicity, we treat

the layers independent of each other by neglecting the buoyancy term perturbations in

PV and also neglect the presence of the mean zonal flow. With these assumptions, we

derived approximate expressions for the layer-wise dispersion relation and group velocity

by substituting ψi = ψ̃ie
j(kxx+kyy−ωt) in equation (2.1), which are given as (for a brief

review, refer section 15.1.2 in Vallis, 2017)

ωi ≈ δi1Ubkx −
β∗i kx
k2x + k2y

, (6.5)

Cy
gi =

∂ωi
∂ky
≈ 2β∗i kxky

(k2x + k2y)
2
, (6.6)

where ωi and Cy
gi are the frequency and meridional group velocity of Rossby waves, respec-

tively, in ith layer and β∗i = β + εiSiUb is the background PV gradient in the meridional
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direction. kx and ky are the zonal and meridional wavenumbers, respectively. δi1 is the

Kronecker delta and ε1 = −ε2 = 1. Indeed, the dynamics of Rossby waves is more complex

than simple plane waves due to the coupling between the layers and due to the presence

of multiple jets. The aim here is only to qualitatively understand the eddy impacts in

terms of group velocity vectors and investigate why the magnitudes of the RSC terms are

different in the upper and lower layers. Neglecting the mean zonal flow and buoyancy

perturbation term are major assumptions in our approach. Since Reynolds stresses only

depend on the eddy field, the presence of jets makes little difference. Also, Reynolds

stresses are not affected by the vertical flow structure. Hence, the usage of the simplified

expressions for the dispersion relation is reasonable for our purposes.

Further, we assume that the Rossby wave group velocity is directed away from

the EJC in both layers as Rossby waves carry energy away from the region of stirring

(Thompson, 1971). Our assumption of more stirring by eddies in the eastward jet regions

is only based on figure 6.5 and we do not have any physical reasoning for this. In response

to the energy carried by Rossby waves away from the EJC, there is a convergence or

divergence of momentum in the EJC. For a disturbance of the form ψ′i = Aie
i(kxx+kyy−ωit)

in ith layer (Ai is some magnitude), associated zonally averaged momentum flux in the

meridional direction is given as (Vallis, 2017)

u′iυ
′
i = −kxkyA

2
i

2
. (6.7)

The direction of momentum flux transfer by eddies depends on the sign of kxky,

which can be determined from equation (6.6). By construction, β∗i is of the opposite

signs in the upper and lower layers. This is required for the system to be baroclinically

unstable (Charney and Stern, 1962); and thus, generate eddies. β∗i is positive (negative)

in the upper (lower) layer in the ES case, whereas it is positive (negative) in the lower

(upper) layer in the WS case. In order to have the group velocity directed away from

the EJC, for positive β∗i , we have kxky > 0 (kxky < 0) to the northward (southward)

of the EJC. Consequently, we have u′iυ
′
i < 0 to the northward of the EJC and u′iυ

′
i > 0

to the southward of the EJC and this results in a convergence of eddy momentum into

the eastward jets. Hence, eddies tend to make the jets stronger. On the other hand,

for negative β∗i , we have kxky < 0 (kxky > 0) to the northward (southward) of EJC,

which predicts a divergence of eddy momentum from the EJC and eddies tend to act

against the jets. The analysis predicts that eastward jets are forced by eddies only for

a positive background PV gradient in the meridional direction and Reynolds stresses are

more efficient in the top (bottom) layer in the ES (WS) case, which is clearly seen in

figure 6.5. In general, eddies need not transfer momentum in opposite directions in the

upper and lower layers. The Reynolds stresses may still force the jets in both layers as

the dynamics in the two-layer QG model is more complex, which is not captured in our

simplified approach. However, it is quite likely that the opposite signs of the layer-wise
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background meridional PV gradients would still affect the strength of Reynolds stresses.

Indeed, equations (6.5-6.6) are a huge simplification and neglecting the jets and

buoyancy terms in the PV cannot be justified easily. The Rossby wave group velocity

is affected by the presence of the mean flow and vertical flow structure. However, the

aim of this work is only to qualitatively understand the differences between the upper

and lower-layer eddy momentum fluxes on the basis of the Rossby wave group velocity

direction vectors, which we inferred from the fully nonlinear simulations (figure 6.5). Our

analysis provides us with a reasonable explanation of why there should be a disparity

in the strength of the upper and lower-layer eddy momentum fluxes. Although we only

considered the layer-wise background PV gradients, the argument is also valid for the

layer-wise full PV gradients because the signs of PV gradients in the fully developed

flow field are the same as the signs of the background PV gradients (see figure 6.5).

Although our simplified approach explains the differences in the strength of the layer-

wise RSC terms, the main limitation of our approach is that it cannot predict the relative

strengths of the RSC terms in individual layers. Also, our method does not provide

any information about the wavenumbers that contribute the most to eddy momentum

flux convergence/divergence. Further work that accounts for the presence of jets and

buoyancy terms is required to address these aspects.

6.7 Summary

In this chapter, we analysed the roles of the Reynolds stress and form stress terms in

the maintenance of zonal jets over a flat bottom. We find that the Reynolds stress term

forces the jets via up-gradient momentum fluxes in the entire fluid column and the form

stress term is responsible for transferring momentum from the upper to the lower layer

where it is balanced by bottom friction. Here, we compared the results in systems forced

with either an eastward background shear or a westward shear. We show that, despite

some local differences in eddy structure and heat diffusivity, the overall eddy dynamics

is the same in the two cases. This looks somewhat in contrast to the works of Berloff

et al. (2009a,b), who concluded that the Reynolds and form stress terms have opposite

effects on baroclinic jets in systems forced with an eastward vs a westward vertical shear.

However, the differences between our results and previous works are caused by the phase

reversal of the baroclinic flow in the WS case, in which the barotropic and baroclinic flows

are in opposite phases as the bottom layer is more energetic (figure 6.2). Because of this

reversal, the eddy effects look opposite, even though the overall dynamics is the same.

Thus, the results presented in this study are consistent with Berloff et al. (2009a,b).

We also observe that the strength of the energy transfer to the jets from eddies

through Reynolds stresses tends to be significantly different in the upper and lower lay-

ers (table 6.2), even though the vertical flow structure is predominantly barotropic (also

68



see Thompson and Young, 2007). The RSC term tends to be stronger in the layer that

experiences a positive meridional PV gradient. In order to understand this, we used sim-

plified layer-wise Rossby wave group velocity expressions and analysed the phase vectors

associated with the momentum transfer by eddies in the meridional direction. In general,

an eastward flow can be generated by stirring due to baroclinic eddies, in which Rossby

waves carry energy away from the stirring regions resulting in the convergence of eddy

momentum into eastward jets (Dickinson, 1969; Thompson, 1971, 1980). We find that

convergence of eddy momentum into eastward jets occurs only for positive meridional PV

gradients and this explains the differences in the strength of the layer-wise RSC terms.

Note that our approach is qualitative as we treated the layers as independent of each

other and neglected the presence of the jets. One should proceed with caution if a similar

method is used in other scenarios.
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7
Conclusions

The oceans are populated with alternating jet patterns, which play an important role in

ocean transport and mixing (Thompson, 2008). These jets are seen to possess spatial and

temporal variability, as jets can drift and mix/merge with other multiple jets (Sokolov

and Rintoul, 2007; Thompson and Richards, 2011). This jet variability is believed to be

primarily due to the presence of ocean bathymetry, which also affects the cross-jet trans-

port (Thompson and Richards, 2011; Thompson and Sallée, 2012). In general, ocean

bathymetry greatly affects the large-scale ocean circulation (Hogg and Munday, 2014),

as nonuniform bathymetry creates spatially nonuniform potential vorticity (PV) gradi-

ents (Radko and Kamenkovich, 2017). As a consequence, eddy activity and transport

properties change significantly around topographic features (Thompson and Sallée, 2012;

Tamsitt et al., 2017).

In this thesis, we studied the dynamics of multiple jets over a zonally sloped topog-

raphy in the two-layer quasi-geostrophic (QG) model forced with a uniform background

vertical velocity shear. Idealised QG models have been quite effective in understanding

the impacts of topography on the jet dynamics. For example, Thompson (2010) stud-

ied the jet formation over a two-dimensional sinusoidal topography and found that eddy

transport in the meridional direction increases with increasing the topographic steep-

ness. Boland et al. (2012) studied the jet dynamics over a zonal topographic slope and

showed that jets tilt from the zonal direction, as the jets tend to align with the tilted

barotropic PV isolines, and drift meridionally (also see Chen et al., 2015). However, it is

not completely clear why jets tend to drift over topography. In this work, we analysed

the dynamics of jets formed over a zonally sloped topography and mainly focused on

the drifting behaviour of jets. Additionally, we investigated how topography affects the

jet-eddy interactions and how it impacts the large-scale circulation. The conclusions of
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this thesis are in the following sections.

7.1 Jet drift and the linear dynamics

In chapter 3, we studied how topography induces jet drift. In numerical simulations run

with different slope magnitudes, we observe that the jets tilt from the zonal direction

and drift meridionally with a constant speed. Both the tilt angle and drift speed increase

with the slope magnitude, which is in agreement with Boland et al. (2012). In order to

understand why the jets drift, we analysed the time-mean PV balances in the state of

statistical equilibrium. In order to separate the jets and eddies, we rewrote the governing

dynamical equations in a frame of reference moving with the jets such that the jets appear

completely stationary and zonal in the new frame of reference. We decomposed the flow

field into the time-mean flow and eddy field in the moving frame of reference and derived

the time-mean PV balances. In addition to nonlinear stress terms (eddy forcing), linear

stress terms appear in the time-mean PV balances due to the presence of topography.

We then computed correlation coefficients between the cross-jet time-mean profiles of the

stress terms and mean PV profiles.

We find that the linear stress terms are much stronger than the non-linear eddy

forcing terms and the linear dynamics largely controls the jet drift. The jet drift velocities

agree well with the phase velocities of linear Rossby waves computed using the linear

dispersion relation. Moreover, in the overall balance, the jets are directly forced by the

linear stress terms, which are directly proportional to the mean flow itself, and eddies

act against the jets. Since the forcing term is directly proportional to the mean flow, by

construction, the maxima in the cross-jet profiles of the forcing terms and mean PV are

not aligned and have a large offset. As a result of this off-core forcing term, the jets are

pushed in the meridional direction. From the perspective of PV conservation, the jets

drift meridionally to compensate for the PV advection by the mean flow across the mean

PV isolines. This is also in agreement with the hypothesis of Boland et al. (2012). Note

that the results are limited to mild topographic slopes and non-linear eddy effects may

be significant in the presence of steep topography.

7.2 Jet-topography interactions

We observe that the jets are directly forced by the linear stress terms (see chapter 3),

which are proportional to the mean flow itself. Further analysis revealed that the tilted

jets are coupled to the imposed background shear and the jets are able to extract energy

directly from the background shear. In fact, for sufficiently large slopes, the energy gain

by the jets from the imposed shear can even be more than the energy gain by mesoscale

eddies through the baroclinic instability process (see chapter 4). Also, the total energy
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gain by the jets and eddies from the imposed shear increases with the slope magnitude

and the system tends to be more energetic, which is in agreement with earlier studies

(Arbic and Flierl, 2004b; Smith, 2007; Boland et al., 2012).

On the other hand, eddies tend to act against the jets and gain energy from the

jets. This is in contrast to the conventional view that jets are forced by mesoscale eddies

(Rhines, 1975; Panetta, 1993; Berloff et al., 2009a). We further decomposed the eddy

forcing term into the Reynolds stress term and form stress term to look at their impacts

on the jets. The behaviour of the Reynolds stress and form stress terms is the same

as in the case of stationary zonal jets. The form stress term opposes the jets as eddies

grow by converting the mean available potential energy into kinetic energy, whereas the

Reynolds stress term forces the jets (Thompson and Young, 2007; Berloff et al., 2009a).

In the overall balance, the form stress term dominates over the Reynolds stress term in

the presence of the sloped topography and the net impact of the eddy forcing is to weaken

the jets. We reached the same conclusion when we looked at eddy fluxes of eddy relative

vorticity and buoyancy.

Another important observation we made is that eddy kinetic energy increases with

the slope magnitude as eddies gain energy from both the tilted jets and imposed back-

ground shear. Moreover, stronger eddy activity can enhance net cross-jet transport. We

computed eddy heat and PV diffusivities as a function of the slope magnitude and find

that the diffusivity coefficients increase with the topographic steepness, which is in agree-

ment with the works of Thompson (2010); Boland et al. (2012). Note that these previous

studies computed effective diffusivities in a stationary frame of reference; hence, their

formulation included the effects of both the jets and eddies. On the other hand, in this

work, the diffusivity computations were performed in the moving frame of reference and

only the eddy fluxes were considered in the computations.

7.3 Jet dynamics in weak dissipation regimes

The results discussed above are limited to continuously forced-dissipative systems, in

which the energy gain from the imposed background shear is balanced by viscous dissi-

pation and bottom friction. In chapter 5, we studied the dynamics of tilted jets in weak

dissipation regimes. We observe that, in addition to the tilted jets, many large-scale al-

ternating patterns, which were extracted using the Principal Component Analysis, can

coexist in the system. These structures are comparable to the tilted jets in size and are

of much larger scale than the size of mesoscale eddies. Similar to the tilted jets, these

large-scale structures can have different tilt angles and propagate with different speeds.

In this thesis, we focused on the leading four EOFs, which capture a majority of the

variance in the flow field. These four EOFs describe the tilted jets and a purely zonal

mode. Similar to the tilted jets, the zonal mode propagates with a constant Rossby wave
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phase speed and the propagation speed increases linearly with the slope magnitude and

decreases roughly as the square of the meridional wavenumber. We further observe that

the relative contributions of the tilted jets and zonal mode are affected by the magnitudes

of the slope magnitude and dissipation parameters. The variance explained by the jets

(zonal mode) in the full flow field decreases (increases) for steeper slopes and smaller

values of eddy viscosity and bottom friction parameters.

In order to understand why the tilted jets and purely zonal modes coexist, we anal-

ysed two-dimensional kinetic energy spectra, which showed a presence of nonlinear inter-

actions involving the tilted jets, zonal mode and mesoscale eddies. In fact, the jets lost

almost all the energy to the zonal mode when we removed forcing and dissipative terms

in the middle of a simulation. This indicates that the zonal mode grows via nonlinear

interactions and gains energy from the tilted jets and eddies. In order to confirm the hy-

pothesis, linear stability analysis was performed in the drifting frame of reference around

a base state of the time-mean tilted jets. It is found that the eigenmodes present at small

wavenumbers are generally stable or weakly unstable; thus, the zonal mode must have

received energy through nonlinear interactions in the numerical simulations. These non-

linear interactions are greatly affected by eddy viscosity and bottom friction. For smaller

magnitudes of the dissipative parameters, many unstable modes appear, which are other-

wise stable. This suggests that strong dissipation tends to suppress small-scales resulting

in weaker nonlinear interactions. This somewhat explains the absence of the zonal mode

in the numerical solutions that had relatively strong viscous dissipation. However, it is

not understood why the system is dominated by purely zonal modes in weak dissipation

regimes. Since the zonal modes are aligned with the imposed shear, they cannot gain

energy directly from the background shear (see table 4) and must receive energy through

nonlinear interactions. It is not yet clear if this is just a coincidence or requirement by

the system dynamics.

In the numerical simulations, the zonal mode is present at a lower wavenumber

than the wavenumber corresponding to the tilted jets. This shows that eddies are able

to transfer energy to meridional scales longer than the Rhines scale, which is set by a

balance between Rossby waves and eddy energy (Rhines, 1975). Note that Rossby waves

cannot stop the upscale energy transfer (Sukoriansky et al., 2007). Over a flat bottom, the

upscale energy transfer stops near the Rhines scale because the triad interactions, which

are required to transfer energy to longer wavelengths than the Rhines scale, would involve

two almost parallel Fourier modes and such triad interactions are quite inefficient (Vallis

and Maltrud, 1993). It is possible that, in the presence of various large-scale structures

formed over topography, triad interactions are sufficiently strong to transfer energy to

meridional scales longer than the Rhines scale.
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7.4 Eddy fluxes and jet maintenance

In general, multiple jets are seen in eastward as well as westward large-scale flows in

the oceans, e.g. midlatitude gyre circulations, the Southern Ocean. In chapter 6, we

analysed the roles of eddy fluxes in the maintenance of zonal stationary jets in systems

forced with either an eastward or a westward uniform vertical shear. Our primary aim is

to understand how the Reynolds stress term and form stress term affect the jets in the

eastward-sheared (ES) and westward-sheared (WS) cases. Previous studies have shown

that non-linear stress terms have opposite effects on baroclinic jets in the two cases (Berloff

et al., 2009a,b) and there can be significant differences in the meridional structure and

eddy shapes (Berloff and Kamenkovich, 2013a,b). We show that, despite these differences

in the local structure, the impacts of eddies on the jets can be understood with the same

arguments. The Reynolds stress term forces the jets in both layers and the form stress

term transfers momentum from the upper to the lower layer where it is balanced by

bottom friction. The roles of the eddy stress terms may look opposite in the ES and WS

cases if the jet dynamics is analysed in terms of barotropic and baroclinic modes. This is

because the upper (lower) layer is more energetic in the ES (WS) case. As a consequence,

the baroclinic flow components are in opposite phases in the two cases and the eddy effects

look different.

It is also observed that the energy transfer rates to the jets from eddies via Reynolds

stress correlation (RSC) terms are significantly different in the upper and lower layers

(also see Thompson and Young, 2007; Ait-Chaalal and Schneider, 2015). This is surprising

because, in the numerical simulations, the flow field was predominantly barotropic in both

cases and eddy magnitudes were of similar magnitudes in the upper and lower layers. We

show that the RSC terms tend to be stronger in the layer having a positive meridional

PV gradient and this layer also tends to be the more energetic layer. It is known that

stirring by eddies generates Rossby waves that carry energy away from the stirring region

and, consequently, eddy momentum converges into the stirring region resulting in the

generation of an eastward flow (Dickinson, 1969; Thompson, 1971, 1980). We applied the

same argument to the upper and lower layers in the two cases and analysed the direction

of eddy momentum transfer. We find that eddy momentum converges into eastward jet

regions only for positive meridional PV gradients and this explains the differences in the

strength of the layer-wise RSC terms. Note that our approach is qualitative as the layers

were treated independent of each other and the presence of the jets was neglected.

7.5 Broader implications and future direction

The oceans are primarily driven by surface wind and buoyancy forcing. As a result, the

isopycnals in the oceans tilt in the vertical-meridional plane and, consequently, a vertically
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sheared velocity field is created governed by thermal wind balance (Vallis, 2017). This

vertical shear is generally baroclinically unstable and is the main source of energy for

mesoscale eddies. These eddies then transfer energy upscale to form large-scale oceanic

flows, e.g. jets.

In this work, we show that tilted jets and zonal background vertical shear can be

coupled in the presence of topography and the jets can gain energy directly from the

vertical shear. On the other hand, eddy buoyancy fluxes tend to be much stronger in

comparison to eddy relative vorticity fluxes over topography and eddies remove more

energy from the jets via down-gradient buoyancy transfer than the energy transfer to the

jets via Reynolds stresses. In the overall balance, eddies act against the jets. This is

opposite to the classical jet formation arguments that eddies force the jets; hence, comes

the term “eddy-driven jets”. The results presented in this thesis indicate that, at least in

the oceans, mesoscale eddies can either force or oppose the jets depending on the scenario

(e.g. see Kamenkovich et al., 2009). Also, alternating jets can be formed via interactions

between eddies and different large-scale modes, and this makes the jet dynamics more

complex in the oceans. Overall, eddies behave in such a way that jets reach an energy

equilibrium state. Thus, with regards to oceanic jets, a term like “eddy-sustained jets”

would be more appropriate. We studied the jet dynamics over gentle topographic slopes

and this work may not be applicable everywhere in the oceans. This study would be more

helpful in understanding the formation of jets in regions where topographic gradients are

small.

This general eddy effect may also be important in understanding the dynamics of

other large-scale flows in the oceans. For example, topography plays an important role

in the Southern Ocean dynamics where eddies have strong control over the strength of

the Antarctic Circumpolar Current (ACC) (Hallberg and Gnanadesikan, 2006; Munday

et al., 2013). It is seen that eddy activity is significantly enhanced over rough topography

and most of the upwelling and particle transport occur over major topographic features

(Thompson and Sallée, 2012; Tamsitt et al., 2017). This local increase in eddy activity

is seen to be associated with strong topography-mean flow interactions and eddy mixing

is also enhanced at ocean mid-depths over topography (Lu and Speer, 2010; Abernathey

and Cessi, 2014; Youngs et al., 2017). Although the results of this thesis do not apply

directly to such scenarios as we only studied the impacts of mild topographic slopes,

strong jet-topography interactions and enhancement in eddy activity were also observed

in our idealised baroclinic QG model simulations. Thus, idealised QG experiments could

be helpful in studying the effects of topography in the oceans, where the dynamics are

complex because of continuous interactions among a wide range of spatiotemporal scales.

Eddies play a major role in the large-scale circulation in the oceans as well as in

the atmosphere. Thus, it is crucial to understand how eddies redistribute momentum

and buoyancy, which then affect the large-scale flows. In this thesis, we observe that
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the strength of eddy buoyancy fluxes is enhanced over topography and the strength of

eddy momentum fluxes is closely linked to horizontal PV gradients. Topography also

modifies PV gradients; hence, topography can have an indirect effect on eddy momentum

fluxes. In this work, we only studied the jet dynamics over mild topographic slopes in

the two-layer QG model, which assumes a fixed vertical stratification. Idealised primitive

equation model experiments are needed to quantify the topographic effects on eddy fluxes

and the large-scale circulation in the oceans. The results can then be compared against

outputs from global ocean models and observational datasets. Such studies would shed

some light on the impacts of geostrophic eddies on ocean mixing and material transport

in the presence of topography. These idealised studies might even be helpful in incor-

porating topographic impacts in eddy parameterisation schemes, as conventional eddy

parameterisation schemes do not account for the topographic effects, which can result in

unphysical solutions (Adcock and Marshall, 2000). Finally, the analyses presented in this

thesis are based on the Reynolds decomposition of the flow field into the time-mean and

eddy components in a non-stationary frame of reference, and in the future it would be

useful to consider other decompositions (e.g. Berloff, 2005a), which are more relevant for

parameterising the involved eddy effects in non-eddy-resolving or eddy-permitting models.
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A
Coordinate transformation

A.1 Governing equations in a rotated non-stationary frame of reference

Here, we derive the governing equations for the two-layer QG system in a frame of reference

that is moving with a constant velocity and rotated from the zonal direction. For this

purpose, we use the governing equations in the original xy coordinate system, which are

given as
∂Πi

∂t
= −∂ψi

∂x

∂Πi

∂y
+

(
∂ψi
∂y
− δi1Ub

)
∂Πi

∂x
+ ν∇4ψi − δi2γ∇2ψi, (A.1)

where

Πi = ∇2ψi + εiSi(ψ2 − ψ1) + (β + εiSiUb)y + δi2Txx. (A.2)

Here, i = 1 (i = 2) indicates the top (bottom) layer, δij is the Kronecker delta and

ε1 = −ε2 = 1. The rest of the parameters are the same as in equations (2.1-2.2). The

new coordinate system pq is rotated by angle θ and propagating with a constant speed c

in q direction (see figure 3.3). It can be shown that

y = q cos θ + p sin θ + ct cos θ,

x = −q sin θ + p cos θ − ct sin θ. (A.3)

Using the relations above, the governing equations in pq coordinate system can be

written as (note that, in the moving frame of reference ∂/∂t→ ∂/∂t− c∂/∂q)[
∂

∂t
− c ∂

∂q

]
Πi = −

(
∂ψi
∂p
− δi1Ub sin θ

)
∂Πi

∂q
+

(
∂ψi
∂q
− δi1Ub cos θ

)
∂Πi

∂p

+ν∇4ψi − δi2γ∇2ψi, (A.4)
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where

Π1 =

Q1︷ ︸︸ ︷
∇2ψ1 + S1(ψ2 − ψ1) +(β + S1Ub)(q cos θ + p sin θ + ct cos θ),

Π2 =

Q2︷ ︸︸ ︷
∇2ψ2 + S2(ψ1 − ψ2) +(β − S2Ub)(q cos θ + p sin θ + ct cos θ)

+Tx(−q sin θ + p cos θ − ct sin θ).


(A.5)

The variables are a function of (p, q, t). Equation (A.4) can be further expanded as

∂Qi

∂t
= −∂ψi

∂p

∂Qi

∂q
+
∂ψi
∂q

∂Qi

∂p
+ (δi1Ub sin θ + c)

∂Qi

∂q
− δi1Ub cos θ

∂Qi

∂p

− [(β + εiSiUb) cos θ − δi2Tx sin θ]
∂ψi
∂p

+ [(β + εiSiUb) sin θ + δi2Tx cos θ]
∂ψi
∂q

+ ν∇4ψi − δi2γ∇2ψi. (A.6)

A.2 PV budget in the statistical equilibrium

In order to analyse the role of eddies in potential vorticity (PV) balances, we isolate

the contributions of the mean flow and eddies by decomposing the variables into the

time-mean (Qi, ψi) and eddy components (Q′i, ψ
′
i) in equation (A.6),[

∂

∂t
− c ∂

∂q

]
(Q1 +Q′1) = −

(
∂(ψ1 + ψ′1)

∂p
− Ub sin θ

)(
∂(Q1 +Q′1)

∂q
+ (β + S1Ub) cos θ

)
+

(
∂(ψ1 + ψ′1)

∂q
− Ub cos θ

)(
∂(Q1 +Q′1)

∂p
+ (β + S1Ub) sin θ

)
+ ν∇4(ψ1 + ψ′1),

(A.7)

[
∂

∂t
− c ∂

∂q

]
(Qi +Q′i) = −∂(ψ2 + ψ′2)

∂p

(
∂(Q2 +Q′2)

∂q
+ (β − S2Ub) cos θ − Tx sin θ

)
+
∂(ψ2 + ψ′2)

∂q

(
∂(Q2 +Q′2)

∂p
+ (β − S2Ub) sin θ + Tx cos θ

)
+ν∇4(ψ2 + ψ′2)− γ∇2(ψ2 + ψ′2).

(A.8)

We then average the above equations over time to derive the time-mean equations.

Note that Q′i = ψ′i = 0 and ∂Qi
∂p

= ∂ψi
∂p

= 0 (the time-mean profile of the jets is a function

of q only),

∂Q1

∂t
−c∂Q1

∂q
= −∂ψ

′
1

∂p

∂Q′1
∂q

+Ub sin θ
∂Q1

∂q
+
∂ψ′1
∂q

∂Q′1
∂p

+(β+S1Ub) sin θ
∂ψ1

∂q
+ν∇4ψ1, (A.9)
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∂Q2

∂t
− c∂Q2

∂q
= −∂ψ

′
2

∂p

∂Q′2
∂q

+
∂ψ′2
∂q

∂Q′2
∂p

+ (β−S2Ub) sin θ+Tx cos θ)
∂ψ2

∂q
+ν∇4ψ2−γ∇2ψ2.

(A.10)

The time-derivative terms vanish in the equilibrium and we have only retained them

here for clarity. We further introduce velocity (ui = (ui, vi) = (−∂ψi/∂q, ∂ψi/∂p)) and

relative vorticity (ζi = ∇2ψi, where ∇ = (∂/∂p, ∂/∂q)) to represent the nonlinear terms

in the flux form (∇.u′i = 0 from the continuity equation). The final time-mean equations

are

∂Q1

∂t
= −∇.(u′1Q′1) + (c+ Ub sin θ)

∂Q1

∂q
− (β + S1Ub) sin θ · u1 + ν∇2ζ1, (A.11)

∂Q2

∂t
= −∇.(u′2Q′2) + c

∂Q2

∂q
− [(β − S2Ub) sin θ + Tx cos θ] · u2 + ν∇2ζ2 − γζ2. (A.12)

A.3 Energetics derivation

In order to derive energy equations, we multiply equation (A.6) by −Hiψi and add the

layer-wise equations. We first look at the time-derivative term (note that H1S1 = H2S2),

⇒
2∑
i=1

−Hiψi
∂

∂t

[
∇2ψi + εiSi(ψ2 − ψ1)

]
⇒

2∑
i=1

Hi

[
− ∂

∂t
(∇ · (ψi∇ψi)) +

∂

∂t
|∇ψi|2 +∇2ψi

∂ψi
∂t

+
Si
2

∂ψ2
i

∂t

]
−H1S1ψ1

∂ψ2

∂t
−H2S2ψ2

∂ψ1

∂t

⇒
2∑
i=1

Hi

[
− ∂

∂t
(∇ · (ψi∇ψi)) +

1

2

∂

∂t
|∇ψi|2 +∇ · (∇ψi

∂ψi
∂t

) +
Si
2

∂ψ2
i

∂t

]
−H1S1ψ1

∂ψ2

∂t
−H2S2ψ2

∂ψ1

∂t

⇒ ∂

∂t


2∑
i=1

Hi

2
|∇ψi|2︸ ︷︷ ︸

KE

+
H1S1

2
(ψ1 − ψ2)

2︸ ︷︷ ︸
PE

+
2∑
i=1

Hi∇.
[
− ∂

∂t
(ψi∇ψi) +∇ψi

∂ψi
∂t

]
.

(A.13)

In a similar manner, we manipulate the nonlinear terms. These are first written in

the flux form by using the condition ∇.ui = 0,
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⇒
2∑
i=1

−Hiψi

[
−∂ψi
∂p

∂Qi

∂q
+
∂ψi
∂q

∂Qi

∂p

]
=

2∑
i=1

Hiψi∇ · (uiQi)

⇒
2∑
i=1

Hi

[
∇ · (ψiuiQi)−����

���:
0

(∇ψi · ui)Qi

]
=

2∑
i=1

Hi∇ · (ψiuiQi). (A.14)

We now work with the linear terms. We manipulate the terms having ψi and Qi

separately and then add them at the end,

⇒ −H1ψ1

[
(β + S1Ub)

(
− cos θ

∂ψ1

∂p
+ sin θ

∂ψ1

∂q

)]
−H2ψ2

[
−[(β − S2Ub) cos θ − Tx sin θ]

∂ψ2

∂p
+ [(β − S2Ub) sin θ + Tx cos θ]

∂ψ2

∂q

]
⇒ H1(β + S1Ub)

2

(
cos θ

∂ψ2
1

∂p
− sin θ

∂ψ2
1

∂q

)
+
H2

2

[
[(β − S2Ub) cos θ − Tx sin θ]

∂ψ2
2

∂p
− [(β − S2Ub) sin θ + Tx cos θ]

∂ψ2
2

∂q

]
.

(A.15)

We also have,

⇒ −H1ψ1

[
(Ub sin θ + c)

∂Q1

∂q
− Ub cos θ

∂Q1

∂p

]
−H2ψ2c

∂Q2

∂q

⇒ −H1ψ1

[
(Ub sin θ + c)

∂

∂q
(∇2ψ1 + S1(ψ2 − ψ1))− Ub cos θ

∂

∂p
(∇2ψ1 + S1(ψ2 − ψ1))

]
−H2ψ2c

∂

∂q
(∇2ψ2 + S2(ψ1 − ψ2))

⇒ −H1(Ub sin θ + c)

[
∂

∂q
(∇ · (ψ1∇ψ1))−∇ ·

(
∂ψ1

∂q
∇ψ1

)
− 1

2

∂

∂q
|∇ψ1|2

]
+H1Ub cos θ

[
∂

∂p
(∇ · (ψ1∇ψ1))−∇ ·

(
∂ψ1

∂p
∇ψ1

)
− 1

2

∂

∂p
|∇ψ1|2

]
−H2c

[
∂

∂q
(∇ · (ψ2∇ψ2))−∇ ·

(
∂ψ2

∂q
∇ψ2

)
− 1

2

∂

∂q
|∇ψ2|2

]
−H1S1(Ub sin θ + c)

(
ψ1
∂ψ2

∂q
− 1

2

∂ψ2
1

∂q

)
+H1S1Ub cos θ

(
ψ1
∂ψ2

∂p
− 1

2

∂ψ2
1

∂p

)
−H2S2c

(
ψ2
∂ψ1

∂q
− 1

2

∂ψ2
2

∂q

)
. (A.16)
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We can now add equations (A.15-A.16) and some of the terms cancel out.

⇒
2∑
i=1

Hi

[(
ki1

∂

∂p
+ ki2

∂

∂q

)
ψ2
i

]
+
c

2

∂

∂q
(H1|∇ψ1|2 +H2|∇ψ2|2 +H1S1(ψ1 − ψ2)

2)

2∑
i=1

li

[
∂

∂q
(∇ · (ψi∇ψi))−∇ ·

(
∂ψi
∂q
∇ψi

)]
+H1Ub cos θ

[
∂

∂p
(∇ · (ψ1∇ψ1))−∇ ·

(
∂ψ1

∂p
∇ψ1

)]
+H1Ub

(
− cos θ

∂

∂p
+ sin θ

∂

∂q

)
|∇ψ1|2 +H1S1Ub

(
cos θψ1

∂ψ2

∂p
− sin θψ1

∂ψ2

∂q

)
,

(A.17)

where

k11 =
H1

2
β cos θ, k12 = −H1

2
β sin θ

k21 =
H2

2
[(β − S2Ub) cos θ − Tx sin θ], k22 = −H1

2
[(β − S2Ub) sin θ + Tx cos θ]

l1 = −H1(Ub sin θ + c), l2 = −H2c


(A.18)

In equation (A.17), except for the last term, all terms can be represented in the flux

form, i.e. (∇ · B). This means that the integrals of these terms over the whole domain

vanish in our system due to the imposed periodic boundary conditions as there is no flux

input/output from the boundaries.

Finally, the dissipation terms are worked out below,

⇒ −ν
2∑
i=1

Hiψi∇4ψi + γH2ψ2∇2ψ2

⇒ −ν
2∑
i=1

Hi [∇ · (ψi∇ζi)−∇ψi · ∇ζi] + γH2

[
∇ · (ψ2∇ψ2)− |∇ψ2|2

]
⇒ ν

2∑
i=1

Hi

[
−∇ · (ψi∇ζi) +∇ · (ζi∇ψi)− ζ2i

]
+ γH2

[
∇ · (ψ2∇ψ2)− |∇ψ2|2

]
,

(A.19)

where ζi = ∇2ψi is the relative vorticity. The relation above shows that the system loses

energy through viscous dissipation and bottom friction.

A.3.1 Energy budgets of the mean flow and eddies

We now add expressions (A.13-A.19) to analyse the energy budget of the two-layer QG

system. We further integrate the energy equation over the whole domain and average in
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time,

∫
A

∂

∂t
(KE + PE) = −

�
�
�
��>

0∫
A

∇ · B +

∫
A

H1S1Ub

(
cos θψ1

∂ψ2

∂p
− sin θψ1

∂ψ2

∂q

)
−
∫
A

ν

2∑
i=1

Hi|ζi|2 −
∫
A

γH2|∇ψ2|2, (A.20)

where

KE =
2∑
i=1

Hi

2
|∇ψi|2, PE =

H1S1

2
(ψ1 − ψ2)

2 (A.21)

All terms that can be represented in the flux form are contained in ∇ · B and these

terms vanish in the domain integrated energy equation. Thus, in the absence of forcing

and dissipation and terms, i.e. Ub = ν = γ = 0, the total energy of the system is

conserved.

In addition to the total energy budget, we also derive energy budgets of the mean

flow and eddies. This is helpful in analysing the energy exchanges between the large-scale

flow and transient eddy field components. Also, the energy gain by the mean flow and

eddies directly from the imposed background vertical shear can be computed. We first

decompose the full field into the time-mean (ψi, Qi) and transient eddy field (ψ′i, Q
′
i).

Note that ψi = ψi + ψ′i, Q = Qi +Q′i and ψ′i = Q′i = 0.

In order to derive the energy equation for the mean flow, we multiply the equation

(A.6) by −Hiψi and follow the same steps shown above. The final equation integrated

over the whole domain and averaged in time is (domain integrals of the divergence terms,

i.e.
∫
A
∇ · B vanish and are not shown),

∫
A

∂

∂t
(KEm + PEm) = −

∫
A

2∑
i=1

HiQiui · ∇ψi +

∫
A

H1S1Ub

cos θψ1
∂ψ2

∂p︸ ︷︷ ︸
=0

− sin θψ1
∂ψ2

∂q


−
∫
A

ν

2∑
i=1

Hi|ζi|2 −
∫
A

γH2|∇ψ2|2, (A.22)

where

KEm =
2∑
i=1

Hi

2
|∇ψi|2, PEm =

H1S1

2
(ψ1 − ψ2)

2. (A.23)

The second term on the right-hand side (RHS) in the above equation indicates that

tilted jets can gain energy directly from the background flow as sin θ is nonzero. The

first term on the RHS (contribution from the Jacobian term in the original PV equation)

does not vanish here and it represents the energy exchange between the jets and eddies.
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The rest of the terms on the RHS represent the energy loss from the mean flow through

viscous dissipation and bottom friction.

Similarly, an equation for eddy energy can be derived by multiplying the equation

(A.6) by −Hiψ
′
i and integrating over the whole domain as well as averaging in time,

∫
A

∂

∂t
(KEe + PEe) = −

∫
A

2∑
i=1

HiQiui · ∇ψ′i +

∫
A

H1S1Ub

(
cos θψ′1

∂ψ′2
∂p
− sin θψ′1

∂ψ′2
∂q

)

−
∫
A

ν
2∑
i=1

Hi|ζ ′i|2 −
∫
A

γH2|∇ψ′2|2, (A.24)

where

KEe =
2∑
i=1

Hi

2
|∇ψ′i|2, PEe =

H1S1

2
(ψ′1 − ψ′2)2. (A.25)

The first and second terms on the RHS represent the eddy-jet energy exchange

and eddy energy gain from the background available potential energy, respectively. The

energy gain by eddies from jets through jet-eddy interactions is energy loss for the mean

jets. Thus, the first terms on the RHS in equations (A.22,A.24) are equal in magnitude

but are opposite in the sign. This can easily be shown as,∫
A

Qiui · ∇ψi =

∫
A

Qiui · ∇(ψi − ψ′i)

=

∫
A

Qiui · ∇ψi −
∫
A

Qiui · ∇ψ′i

=

��
���

��
���

���
��:0∫

A

Qi [∇ · (uiψi)− ψi∇ · ui] −
∫
A

Qiui · ∇ψ′i (A.26)

The first terms on the RHS in equations (A.22,A.24) can be further simplified to

Qiui · ∇ψi = Q′iu
′
i · ∇ψi

Qiui · ∇ψ′i = Q′iui · ∇ψ′i (A.27)

A.4 Linearisation of the governing equations

We linearise the governing equation (A.6) around the time-mean state of the tilted, drifting

jets. In this scenario, the time-mean flow is a function of q only, i.e., ψi = f(q) and

∂ψi/∂p = 0 and satisfies the governing equation; hence, we have

−(c+ δi1Ub sin θ)
∂

∂q

[
∇2ψi + εiSi(ψ2 − ψ1)

]
− [(β + εiSiUb) sin θ + δi2Tx cos θ]

∂ψi
∂q

= ν∇4ψi − δi2γ∇2ψi. (A.28)
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In order to derive the linearised equations, we then substitute ψi = ψi(q) + ψ′i in

equation (A.6) and ignore the non-linear terms. We further use the relation (A.28) and

the final linearised equation is

[
∂

∂t
− c ∂

∂q

] [
∇2ψ′i + εiSi(ψ

′
2 − ψ′1)

]
+
∂ψ′i
∂p

∂

∂q

[
∇2ψi + εiSi(ψ2 − ψ1)

]
+[(β + εiSiUb) cos θ − δi2Tx sin θ]

∂ψ′i
∂p
− ∂ψi

∂q

∂

∂p

[
∇2ψ′i + εiSi(ψ

′
2 − ψ′1)

]
−[(β + εiSiUb) sin θ + δi2Tx cos θ] sin θ

∂ψ′i
∂q

+δi1Ub

(
− sin θ

∂

∂q
+ cos θ

∂

∂p

)[
∇2ψ′i + εiSi(ψ

′
2 − ψ′1)

]
= ν∇4ψ′i − δi2γ∇2ψi. (A.29)

Let ∂ψi/∂q = −ui, which is the along-jet mean velocity. The linearised equation

can be written as

∂

∂t

[
∇2ψ′i + εiSi(ψ

′
2 − ψ′1)

]
+

[
Ai

∂

∂p
+Bi

∂

∂q

] [
∇2ψ′i + εiSi(ψ

′
2 − ψ′1)

]
+ Ci

∂ψ′i
∂p

+Di
∂ψ′i
∂q

= ν∇4ψ′i − δi2γ∇2ψ′i, (A.30)

where
A1 = Ub cos θ + u1,

A2 = u2,

B1 = −c− Ub sin θ,

B2 = −c,
C1 = (β + S1Ub) cos θ − u′′1 + S1(u1 − u2),
C2 = (β − S2Ub) cos θ − Tx sin θ − u′′2 + S2(u2 − u1),
D1 = −(β + S1Ub) sin θ,

D2 = −(β − S2Ub) sin θ − Tx cos θ.



(A.31)

For the linear stability analysis, we assume solutions of the kind ψ′i = ψ̃i(q)e
i(lp−ωt)

for the perturbation terms, where l is the wavenumber along p direction, and ω is the

frequency.

−iω
[
−l2ψ̃i + ψ̃′′i + εiSi(ψ̃2 − ψ̃1)

]
+

[
Ai

∂

∂p
+Bi

∂

∂q

] [
−l2ψ̃i + ψ̃′′i + εiSi(ψ̃2 − ψ̃1)

]
+ ilCiψ̃i +Diψ̃

′
i = ν(l4ψ̃i + ψ̃′′′′i ) + δi2γ(l2ψ̃i + ψ̃′′i ).

(A.32)
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We then use finite-difference discretisation in direction q to solve the above equa-

tions. This results in a system of equations, which can be represented in a matrix form

as

ωGψ̃ = Hψ̃, (A.33)

|G−1H− ωI| = 0. (A.34)

Here, G and H represent the coefficient matrices, and ψ̃ is the set of all eigenvectors.

We then impose periodic boundary conditions at both ends and solve the eigenvalue

problem for all possible values of the wavenumber l.
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B
Jets in channel simulations

B.1 Jet tilt and drift in a channel simulation

Figure B.1: Adopted from Khatri and Berloff (2018a). Tilted, drifting jets in a channel simulation; (a,b):
Snapshots of the PV anomaly field in the top layer (∇2ψ1+S1(ψ2−ψ1)) and bottom layer (∇2ψ2+S2(ψ1−ψ2))
for the medium-slope configuration (colorbar units are in s−1); (c,d): Hovmöller diagrams of the PV anomaly
field in both layers (PV along a meridional cross-section is plotted against time). ν = 50 m2s−1 and γ = 10−8

s−1 were used in the simulation. The rest of the parameter values were the same as in table 2.1.

In order to verify that jets tilt and drift over a sloped topography irrespective of

the boundary conditions, we ran channel simulations. We imposed partial-slip boundary
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conditions on the meridional boundaries,

∂2ψi
∂n2

− 1

α

∂ψi
∂n

= 0, (B.1)

where ψi is the layer-wise velocity streamfunction and α = 120 km. n is the unit vec-

tor, which is normal-to-wall and faces inward. This condition is imposed to parameterise

dynamically unresolved near-boundary processes (Berloff and McWilliams, 1999). Along

with this boundary condition, we also ensured no normal flow on the meridional bound-

aries. In this simulation, we used a larger 7200 km square domain with 2048× 2049 grid

points to verify that the tendency of the jets to tilt and drift does not depend on the

domain size and grid resolution; however, the tilt angle and drift speed might differ due

to boundary effects. In the simulation, we used ν = 50 m2s−1 and γ = 10−8 s−1, and

the rest of the parameters were the same as given in table 2.1. As seen in figure B.1,

the jets tilt from the zonal direction (tilt angle ∼ 5◦) and drift meridionally with a speed

of about 0.2 cm s−1. The jet dynamics are more complex than in the doubly-periodic

simulations. The drifting jets transport PV in the north-south direction and this results

in the accumulation of positive or negative PV anomalies near the boundaries. Further, a

secondary circulation develops that transports PV along the boundaries (not shown) and,

as a result, the domain integrated PV remains conserved. These secondary circulations

may be important around continental boundaries; however, impacts of these circulations

are not studied in this thesis.

B.2 J and Z modes in a channel simulation

Similar to the doubly-periodic simulations, EOF analysis was performed on the stream-

function field in a channel simulation to confirm the presence of the J and Z modes

(figure B.2). The spatial flow structure is quite complicated due to the presence of the

meridional boundaries; nevertheless, the tilted J and purely zonal Z modes are visible,

especially in the northern and southern halves of the domain. Here, the J and Z modes

propagate southwards and northwards, respectively (see Hovmöller plots in figure B.2),

and the power spectra of the PCs corresponding to these modes show distinct peaks in

the frequency space indicating the propagation with roughly constant speeds.

B.3 EOFs in doubly-periodic simulations

In chapter 5, we only discussed the first four EOFs, which capture the J and Z modes.

Here, we show the first twenty EOFs (figure B.3) obtained from the EOF analysis corre-

sponding to the simulation in figure 5.1. In addition to the J and Z modes, higher EOFs

also have a large-scale structure and are present at lower wavenumbers than mesoscale

eddies. Most of these EOFs appear in pairs and this indicates that they propagate.
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Figure B.2: The leading EOFs of the streamfunction field in a channel simulation; (a) EOF1 (b) EOF3. The
upper-layer spatial structure of the EOFs is shown in the top panels and the Hovmöller diagrams of the J and
Z modes reconstructed using the EOFs and their PCs are shown in the middle panels. The J and Z modes
together capture about 60% of the variance. The colorbar range is [-1,1], blue to red. The power spectra of
PCs (normalised to unity) corresponding to the EOFs are shown in the bottom panels.

Figure B.3: The first twenty EOFs of the streamfunction field in the doubly-periodic simulation corresponding
to figure 5.1. The panels show the spatial structure of the EOFs in the top layer. The colorbar range is [-1,1],
blue to red. The first twenty EOFs capture more than 90% of the variance.

88



C
Copyright permissions

89



18/02/2019, 17*28RightsLink - Your Account

Page 1 of 2https://s100.copyright.com/MyAccount/viewPrintableLicenseDetails?ref=8f9c9dd3-e8e7-4c1f-bd1d-69203ce27a74

CAMBRIDGE UNIVERSITY PRESS LICENSE
TERMS AND CONDITIONS

Feb 18, 2019

This Agreement between Mr. Hemant Khatri ("You") and Cambridge University Press ("Cambridge University Press") consists of
your license details and the terms and conditions provided by Cambridge University Press and Copyright Clearance Center.

License Number 4532001468682

License date Feb 18, 2019

Licensed Content
Publisher

Cambridge University Press

Licensed Content
Publication

The Journal of Fluid Mechanics

Licensed Content Title A mechanism for jet drift over topography

Licensed Content Author Hemant Khatri, Pavel Berloff

Licensed Content Date Apr 26, 2018

Licensed Content
Volume

845

Licensed Content Issue undefined

Start page 392

End page 416

Type of Use Dissertation/Thesis

Requestor type Author

Portion Full article

Author of this Cambridge
University Press article

Yes

Author / editor of the new
work

Yes

Order reference number

Territory for reuse World

Title of your thesis /
dissertation

Dynamics of ocean jets over topography

Expected completion
date

Aug 2019

Estimated size(pages) 100

Requestor Location Mr. Hemant Khatri
613, Huxley,
Imperial College London
South Kensington
London, London SW7 2AZ
United Kingdom
Attn: Mr. Hemant Khatri

Publisher Tax ID GB823847609

Billing Type Invoice

Billing Address Mr. Hemant Khatri
613, Huxley,
Imperial College London



18/02/2019, 17*28RightsLink - Your Account

Page 2 of 2https://s100.copyright.com/MyAccount/viewPrintableLicenseDetails?ref=8f9c9dd3-e8e7-4c1f-bd1d-69203ce27a74

South Kensington
London, United Kingdom SW7 2AZ
Attn: Mr. Hemant Khatri

Total 0.00 GBP
Terms and Conditions

TERMS & CONDITIONS
Cambridge University Press grants the Licensee permission on a non-exclusive non-transferable basis to reproduce, make
available or otherwise use the Licensed content 'Content' in the named territory 'Territory' for the purpose listed 'the Use' on
Page 1 of this Agreement subject to the following terms and conditions.

1. The License is limited to the permission granted and the Content detailed herein and does not extend to any other
permission or content.

2. Cambridge gives no warranty or indemnity in respect of any third-party copyright material included in the Content, for
which the Licensee should seek separate permission clearance.

3. The integrity of the Content must be ensured.
4. The License does extend to any edition published specifically for the use of handicapped or reading-impaired

individuals.
5. The Licensee shall provide a prominent acknowledgement in the following format: 

author/s, title of article, name of journal, volume number, issue number, page references, , reproduced with
permission.

Other terms and conditions:
v1.0

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.



References

Abernathey, R. and Cessi, P. (2014). Topographic enhancement of eddy efficiency in

baroclinic equilibration. J. Phys. Oceanogr., 44(8):2107–2126.

Adcock, S. T. and Marshall, D. P. (2000). Interactions between geostrophic eddies and the

mean circulation over large-scale bottom topography. J. Phys. Oceanogr., 30(12):3223–

3238.

Ait-Chaalal, F. and Schneider, T. (2015). Why eddy momentum fluxes are concentrated

in the upper troposphere. J. Atmos. Sci., 72(4):1585–1604.

Arbic, B. K. and Flierl, G. R. (2004a). Baroclinically unstable geostrophic turbulence in

the limits of strong and weak bottom ekman friction: Application to midocean eddies.

J. Phys. Oceanogr., 34(10):2257–2273.

Arbic, B. K. and Flierl, G. R. (2004b). Effects of mean flow direction on energy, isotropy,

and coherence of baroclinically unstable beta-plane geostrophic turbulence. J. Phys.

Oceanogr., 34(1):77–93.

Arbic, B. K., Polzin, K. L., Scott, R. B., Richman, J. G., and Shriver, J. F. (2013).

On eddy viscosity, energy cascades, and the horizontal resolution of gridded satellite

altimeter products. J. Phys. Oceanogr., 43(2):283–300.

Baldwin, M. P., Rhines, P. B., Huang, H. P., and McIntyre, M. E. (2007). The jet-stream

conundrum. Science, 315(5811):467–468.

Barthel, A., Hogg, A., Waterman, S., and Keating, S. (2017). Jet-topography interactions

affect energy pathways to the deep southern ocean. J. Phys. Oceanogr., 47(7):1799–

1816.

Beebe, R. F., Ingersoll, A. P., Hunt, G. E., Mitchell, J. L., and Müller, J. P. (1980).

Measurements of wind vectors, eddy momentum transports, and energy conversions in

jupiter’s atmosphere from voyager 1 images. Geophys. Res. Lett., 7(1):1–4.

Benilov, E. S. (2001). Baroclinic instability of two-layer flows over one-dimensional bottom

topography. J. Phys. Oceanogr., 31(8):2019–2025.

Berloff, P. (2005a). On dynamically consistent eddy fluxes. Dynam. Atmos. Oceans,

38(3):123–146.

Berloff, P. (2005b). On rectification of randomly forced flows. J. Mar. Res., 63(3):497–527.

92



Berloff, P. and Kamenkovich, I. (2013a). On spectral analysis of mesoscale eddies. part i:

Linear analysis. J. Phys. Oceanogr., 43(12):2505–2527.

Berloff, P. and Kamenkovich, I. (2013b). On spectral analysis of mesoscale eddies. part

ii: Nonlinear analysis. J. Phys. Oceanogr., 43(12):2528–2544.

Berloff, P., Kamenkovich, I., and Pedlosky, J. (2009a). A mechanism of formation of

multiple zonal jets in the oceans. J. Fluid Mech., 628:395–425.

Berloff, P., Kamenkovich, I., and Pedlosky, J. (2009b). A model of multiple zonal jets in

the oceans: Dynamical and kinematical analysis. J. Phys. Oceanogr., 39(11):2711–2734.

Berloff, P., Karabasov, S., Farrar, J. T., and Kamenkovich, I. (2011). On latency of

multiple zonal jets in the oceans. J. Fluid Mech., 686:534–567.

Berloff, P. S. and McWilliams, J. C. (1999). Quasigeostrophic dynamics of the western

boundary current. J. Phys. Oceanogr., 29(10):2607–2634.

Boland, E., Thompson, A. F., Shuckburgh, E., and Haynes, P. (2012). The formation of

nonzonal jets over sloped topography. J. Phys. Oceanogr., 42(10):1635–1651.

Buckingham, C. E. and Cornillon, P. C. (2013). The contribution of eddies to striations

in absolute dynamic topography. J. Geophys. Res. Oceans, 118(1):448–461.

Chan, C. J., Plumb, R. A., and Cerovecki, I. (2007). Annular modes in a multiple

migrating zonal jet regime. J. Atmos. Sci., 64(11):4053–4068.

Charney, J. C. (1971). Geostrophic turbulence. J. Atmos. Sci., 28:1087–1095.

Charney, J. G. (1948). On the scale of atmospheric motions. Geofys. Publ. Oslo, 17(2):1–

17.

Charney, J. G. and Stern, M. (1962). On the stability of internal baroclinic jets in a

rotating atmosphere. J. Atmos. Sci., 19(2):159–172.

Chelton, D. B., Deszoeke, R. A., Schlax, M. G., El Naggar, K., and Siwertz, N. (1998).

Geographical variability of the first baroclinic rossby radius of deformation. J. Phys.

Oceanogr., 28(3):433–460.

Chemke, R. and Kaspi, Y. (2015a). The latitudinal dependence of atmospheric jet scales

and macroturbulent energy cascades. J. Atmos. Sci., 72(10):3891–3907.

Chemke, R. and Kaspi, Y. (2015b). Poleward migration of eddy-driven jets. J. Adv.

Model. Earth Sy., 7(3):1457–1471.

Chen, C. and Kamenkovich, I. (2013). Effects of topography on baroclinic instability. J.

Phys. Oceanogr., 43(4):790–804.

93



Chen, C., Kamenkovich, I., and Berloff, P. (2015). On the dynamics of flows induced by

topographic ridges. J. Phys. Oceanogr., 45(3):927–940.

Chen, C., Kamenkovich, I., and Berloff, P. (2016). Eddy trains and striations in quasi-

geostrophic simulations and the ocean. J. Phys. Oceanogr., 46(9):2807–2825.

Cho, J. Y. K. and Polvani, L. M. (1996). The emergence of jets and vortices in freely

evolving, shallow-water turbulence on a sphere. Phys. Fluids, 8(6):1531–1552.

Connaughton, C. P., Nadiga, B. T., Nazarenko, S. V., and Quinn, B. E. (2010). Modula-

tional instability of rossby and drift waves and generation of zonal jets. J. Fluid Mech.,

654:207–231.

Constantinou, N. C., Farrell, B. F., and Ioannou, P. J. (2014). Emergence and equili-

bration of jets in beta-plane turbulence: applications of stochastic structural stability

theory. J. Atmos. Sci., 71(5):1818–1842.

Cravatte, S., Kessler, W. S., and Marin, F. (2012). Intermediate zonal jets in the tropical

pacific ocean observed by argo floats*. J. Phys. Oceanogr., 42(9):1475–1485.

Cravatte, S., Kestenare, E., Marin, F., Dutrieux, P., and Firing, E. (2017). Subthermo-

cline and intermediate zonal currents in the tropical pacific ocean: paths and vertical

structure. J. Phys. Oceanogr., 47(9):2305–2324.

Danilov, S. and Gryanik, V. M. (2004). Barotropic beta-plane turbulence in a regime

with strong zonal jets revisited. J. Atmos. Sci., 61(18):2283–2295.

Danilov, S. and Gurarie, D. (2004). Scaling, spectra and zonal jets in beta-plane turbu-

lence. Phys. Fluids, 16(7):2592–2603.

Dar, G., Verma, M. K., and Eswaran, V. (2001). Energy transfer in two-dimensional mag-

netohydrodynamic turbulence: formalism and numerical results. Physica D, 157(3):207–

225.

Dewar, W. K. (1998). Topography and barotropic transport control by bottom friction.

J. Mar. Res., 56(2):295–328.

Dickinson, R. E. (1969). Theory of planetary wave-zonal flow interaction. J. Atmos. Sci.,

26(1):73–81.

Dritschel, D. G. and McIntyre, M. E. (2008). Multiple jets as pv staircases: the phillips

effect and the resilience of eddy-transport barriers. J. Atmos. Sci., 65(3):855–874.

Dunkerton, T. J. and Scott, R. K. (2008). A barotropic model of the angular

momentum–conserving potential vorticity staircase in spherical geometry. J. Atmos.

Sci., 65(4):1105–1136.

94



Edmon Jr, H., Hoskins, B., and McIntyre, M. (1980). Eliassen-palm cross sections for the

troposphere. J. Atmos. Sci., 37(12):2600–2616.

Farrell, B. F. and Ioannou, P. J. (2007). Structure and spacing of jets in barotropic

turbulence. J. Atmos. Sci., 64(10):3652–3665.

Gierasch, P. J., Conrath, B. J., and Magalha, J. A. (1986). Zonal mean properties of

jupiter’s upper troposphere from voyager infrared observations. Icarus, 67(3):456–483.

Haidvogel, D. B. and Held, I. M. (1980). Homogeneous quasi-geostrophic turbulence

driven by a uniform temperature gradient. J. Atmos. Sci., 37(12):2644–2660.

Hallberg, R. and Gnanadesikan, A. (2006). The role of eddies in determining the structure

and response of the wind-driven southern hemisphere overturning: Results from the

modeling eddies in the southern ocean (meso) project. J. Phys. Oceanogr., 36(12):2232–

2252.

Hannachi, A., Jolliffe, I. T., and Stephenson, D. B. (2007). Empirical orthogonal functions

and related techniques in atmospheric science: A review. Int. J. Climatol., 27(9):1119–

1152.

Hart, J. E. (1975a). Baroclinic instability over a slope. part i: Linear theory. J. Phys.

Oceanogr., 5(4):625–633.

Hart, J. E. (1975b). Baroclinic instability over a slope. part ii: Finite-amplitude theory.

J. Phys. Oceanogr., 5(4):634–641.

Held, I. M. (2007). Progress and problems in large-scale atmospheric dynamics.

Hogg, A. M. and Munday, D. R. (2014). Does the sensitivity of southern ocean circulation

depend upon bathymetric details? Philos. T. Roy. Soc. A, 372(2019):20130050.

Holland, W. R. (1978). The role of mesoscale eddies in the general circulation of the

oceannumerical experiments using a wind-driven quasi-geostrophic model. J. Phys.

Oceanogr., 8(3):363–392.

Holloway, G. (2010). Eddy stress and shear in 2-d flow. J. Turbulence, (11):N14.

Hristova, H. G., Pedlosky, J., and Spall, M. A. (2008). Radiating instability of a meridional

boundary current. J. Phys. Oceanogr., 38(10):2294–2307.

Huang, H. P. and Robinson, W. A. (1998). Two-dimensional turbulence and persistent

zonal jets in a global barotropic model. J. Atmos. Sci., 55(4):611–632.

Ingersoll, A. P., Beebe, R. F., Mitchell, J. L., Garneau, G. W., Yagi, G. M., and Müller,

J. P. (1981). Interaction of eddies and mean zonal flow on jupiter as inferred from

voyager 1 and 2 images. J. Geophys. Res. Space Physics, 86(A10):8733–8743.

95



Ingersoll, A. P., Gierasch, P. J., Banfield, D., Vasavada, A. R., and Team, G. I. (2000).

Moist convection as an energy source for the large-scale motions in jupiter’s atmosphere.

Nature, 403(6770):630–632.

Jochum, M., Danabasoglu, G., Holland, M., Kwon, Y.-O., and Large, W. (2008). Ocean

viscosity and climate. J. Geophys. Res. Oceans, 113(C6).

Kamenkovich, I., Berloff, P., and Pedlosky, J. (2009). Role of eddy forcing in the dynamics

of multiple zonal jets in a model of the north atlantic. J. Phys. Oceanogr., 39(6):1361–

1379.

Karabasov, S. A., Berloff, P., and Goloviznin, V. M. (2009). Cabaret in the ocean gyres.

Ocean Model., 30(2):155–168.

Karabasov, S. A. and Goloviznin, V. M. (2009). Compact accurately boundary-adjusting

high-resolution technique for fluid dynamics. J. Comput. Phys., 228(19):7426–7451.

Khatri, H. and Berloff, P. (2018a). A mechanism for jet drift over topography. J. Fluid

Mech., 845:392–416.

Khatri, H. and Berloff, P. (2018b). Role of eddies in the maintenance of multiple jets

embedded in eastward and westward baroclinic shears. Fluids, 3(4):91.

Khatri, H., Sukhatme, J., Kumar, A., and Verma, M. K. (2018). Surface ocean enstrophy,

kinetic energy fluxes, and spectra from satellite altimetry. J. Geophys. Res. Oceans,

123(5):3875–3892.

Kong, H. and Jansen, M. F. (2017). The eddy diffusivity in barotropic β-plane turbulence.

Fluids, 2(4):54.

Kraichnan, R. H. (1967). Inertial ranges in two-dimensional turbulence. Phys. Fluids,

10(7):1417–1423.

Kramer, W., van Buren, M. G., Clercx, H. J. H., and van Heijst, G. J. F. (2006). β-plane

turbulence in a basin with no-slip boundaries. Phys. Fluids, 18(2):026603.

Lee, S. (1997). Maintenance of multiple jets in a baroclinic flow. J. Atmos. Sci.,

54(13):1726–1738.

Lu, J. and Speer, K. (2010). Topography, jets, and eddy mixing in the southern ocean.

J. Mar. Res., 68(3-1):479–502.

Maltrud, M. E. and Vallis, G. K. (1991). Energy spectra and coherent structures in forced

two-dimensional and beta-plane turbulence. J. Fluid Mech., 228:321–342.

Manfroi, A. and Young, W. R. (1999). Slow evolution of zonal jets on the beta plane. J.

Atmos. Sci., 56(5):784–800.

96



Marston, J. B., Conover, E., and Schneider, T. (2008). Statistics of an unstable barotropic

jet from a cumulant expansion. J. Atmos. Sci., 65(6):1955–1966.

Maximenko, N. A., Bang, B., and Sasaki, H. (2005). Observational evidence of alternating

zonal jets in the world ocean. Geophys. Res. Lett., 32:L12607.

Melnichenko, O. V., Maximenko, N. A., Schneider, N., and Sasaki, H. (2010). Quasi-

stationary striations in basin-scale oceanic circulation: vorticity balance from observa-

tions and eddy-resolving model. Ocean Dynam., 60(3):653–666.

Munday, D. R., Johnson, H. L., and Marshall, D. P. (2013). Eddy saturation of equili-

brated circumpolar currents. J. Phys. Oceanogr., 43(3):507–532.

Nadiga, B. T. (2006). On zonal jets in oceans. Geophys. Res. Lett., 33:L10601.

Nakano, H. and Hasumi, H. (2005). A series of zonal jets embedded in the broad zonal

flows in the pacific obtained in eddy-permitting ocean general circulation models. J.

Phys. Oceanogr., 35(4):474–488.

Panetta, R. L. (1993). Zonal jets in wide baroclinically unstable regions: Persistence and

scale selection. J. Atmos. Sci., 50(14):2073–2106.

Poulin, F. and Flierl, G. (2005). The influence of topography on the stability of jets. J.

Phys. Oceanogr., 35(5):811–825.

Qiu, B., Chen, S., and Sasaki, H. (2013). Generation of the north equatorial undercurrent

jets by triad baroclinic rossby wave interactions. J. Phys. Oceanogr., 43(12):2682–2698.

Radko, T. and Kamenkovich, I. (2017). On the topographic modulation of large-scale

eddying flows. J. Phys. Oceanogr., 47(9):2157–2172.

Read, P., Yamazaki, Y., Lewis, S., Williams, P. D., Miki-Yamazaki, K., Sommeria, J.,

Didelle, H., and Fincham, A. (2004). Jupiter’s and saturn’s convectively driven banded

jets in the laboratory. Geophys. Res. Lett., 31(22).

Read, P. L., Conrath, B. J., Fletcher, L. N., Gierasch, P. J., Simon-Miller, A. A., and

Zuchowski, L. C. (2009). Mapping potential vorticity dynamics on saturn: Zonal mean

circulation from cassini and voyager data. Planet. Space Sci., 57(14):1682–1698.

Read, P. L., Yamazaki, Y. H., Lewis, S. R., Williams, P. D., Wordsworth, R., Miki-

Yamazaki, K., Sommeria, J., and Didelle, H. (2007). Dynamics of convectively driven

banded jets in the laboratory. J. Atmos. Sci., 64(11):4031–4052.

Rhines, P. B. (1975). Waves and turbulence on a beta-plane. J. Fluid Mech., 69(03):417–

443.

Rhines, P. B. (1979). Geostrophic turbulence. Annu Rev Fluid Mech, 11(1):401–441.

97



Richards, K. J., Maximenko, N. A., Bryan, F. O., and Sasaki, H. (2006). Zonal jets in

the pacific ocean. Geophys. Res. Lett., 33:L03605.

Rudko, M. V., Kamenkovich, I. V., Iskadarani, M., and Mariano, A. J. (2018). Zonally

elongated transient flows: Phenomenology and sensitivity analysis. J. Geophys. Res.

Oceans, 123(6):3982–4002.

Scott, R. K. and Polvani, L. M. (2007). Forced-dissipative shallow-water turbulence

on the sphere and the atmospheric circulation of the giant planets. J. Atmos. Sci.,

64(9):3158–3176.

Sinha, B. and Richards, K. J. (1999). Jet structure and scaling in southern ocean models.

J. Phys. Oceanogr., 29(6):1143–1155.

Smith, S. (2007). Eddy amplitudes in baroclinic turbulence driven by nonzonal mean

flow: Shear dispersion of potential vorticity. J. Phys. Oceanogr., 37(4):1037–1050.

Sokolov, S. and Rintoul, S. R. (2007). Multiple jets of the antarctic circumpolar current

south of australia. J. Phys. Oceanogr., 37(5):1394–1412.

Srinivasan, K. (2013). Stochastically forced zonal flows. University of California, San

Diego.

Srinivasan, K. and Young, W. R. (2012). Zonostrophic instability. J. Atmos. Sci.,

69(5):1633–1656.

Srinivasan, K. and Young, W. R. (2014). Reynolds stress and eddy diffusivity of β-plane

shear flows. J. Atmos. Sci., 71(6):2169–2185.

Stern, A., Nadeau, L. P., and Holland, D. (2015). Instability and mixing of zonal jets

along an idealized continental shelf break. J. Phys. Oceanogr., 45(9):2315–2338.

Suhas, D. and Sukhatme, J. (2015). Low frequency modulation of jets in quasigeostrophic

turbulence. Phys. Fluids, 27(1):016601.

Sukoriansky, S., Dikovskaya, N., and Galperin, B. (2007). On the arrest of inverse energy

cascade and the rhines scale. J. Atmos. Sci., 64(9):3312–3327.

Tamsitt, V., Drake, H. F., Morrison, A. K., Talley, L. D., Dufour, C. O., Gray, A. R.,

Griffies, S. M., Mazloff, M. R., Sarmiento, J. L., Wang, J., et al. (2017). Spiraling

pathways of global deep waters to the surface of the southern ocean. Nature Comm.,

8(1):172.

Tansley, C. E. and Marshall, D. P. (2001). Flow past a cylinder on a β plane, with

application to gulf stream separation and the antarctic circumpolar current. J. Phys.

Oceanogr., 31(11):3274–3283.

98



Thompson, A. F. (2008). The atmospheric ocean: eddies and jets in the antarctic cir-

cumpolar current. Philos. T. Roy. Soc. A, 366(1885):4529–4541.

Thompson, A. F. (2010). Jet formation and evolution in baroclinic turbulence with simple

topography. J. Phys. Oceanogr., 40(2):257–278.

Thompson, A. F. and Richards, K. J. (2011). Low frequency variability of southern ocean

jets. J. Geophys. Res. Oceans, 116:C09022.

Thompson, A. F. and Sallée, J. (2012). Jets and topography: Jet transitions and the im-

pact on transport in the antarctic circumpolar current. J. Phys. Oceanogr., 42(6):956–

972.

Thompson, A. F. and Young, W. R. (2007). Two-layer baroclinic eddy heat fluxes: Zonal

flows and energy balance. J. Atmos. Sci., 64(9):3214–3231.

Thompson, R. O. (1971). Why there is an intense eastward current in the north atlantic

but not in the south atlantic. J. Phys. Oceanogr., 1(3):235–237.

Thompson, R. O. (1980). A prograde jet driven by rossby waves. J. Atmos. Sci.,

37(6):1216–1226.
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