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Abstract

These notes discuss the discrete velocity equations of MOM6 and derive the associated vorticity equation.
In turn, we document how to diagnose the velocity and vorticity budgets in MOM6, including budgets for depth
integrated quantities.

1 Continuous velocity equation

As discussed in Appendix A to Adcroft et al. (2019), MOM6 discretizes the vector-invariant velocity equation.
This equation takes on the following continuous space-time form using a generalized vertical coordinate s =
s(x, y, z, t )[

∂u

∂t

]
s
+

[
f +ζ

h

]
ẑ∧ (h u)+w (ṡ) ∂u

∂z
=−[

ρ−1∇s p +∇sΦ
]−∇sK +F (horz frict) +F (vert frict) +ρ−1τ(bound) (1)

where we have

v = u + ẑ w = x̂ u + ŷ v + ẑ w velocity (2)

∇s = x̂
[
∂

∂x

]
s
+ ŷ

[
∂

∂y

]
s

horizontal gradient on s-surface (3)

w (ṡ) = ∂z

∂s

Ds

Dt
dia-surface velocity used for remapping (4)

ζ=
[
∂v

∂x

]
s
−

[
∂u

∂y

]
s

s-coordinate vertical vorticity (5)

Φ= g z geopotential (more complex when have tides) (6)

−ρ−1∇z p =−[
ρ−1∇s p +∇sΦ

]
horizontal pressure acceleration (7)

K = u2 + v2

2
horizontal kinetic energy per mass (8)

F (horz frict) = horiz friction from horz shear Laplacian or biharmonic (9)

F (vert frict) = vert friction from vertical shear Laplacian (10)

ρ−1τ(bound) = boundary frictional acceleration wind, bottom drag, etc. (11)

The hydrostatic pressure, p, arises from the weight per horizontal area above a point in the fluid, and it has a
boundary condition at the sea surface, z = η(x, y, t ), set by the pressure applied by the overlying atmosphere and
ice, p(z = η) = papplied. The external quantities include the vertical component of planetary vorticity f = 2Ωsinφ
and the gravitational potential Φ = g z. Finally, F is the acceleration due to the divergence of stresses including
those provided through boundary interactions.
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2 Diagnosing terms in the layer velocity equation

In this section we document how to diagnose terms in the MOM6 discretized version of the continuous velocity
equation (1). For our purposes, it is sufficient to assume that the velocity equation (1) is discretized in MOM6 by
assuming the variables are constant within a grid cell layer according to

u → uk h → hk ζ→ ζk p → pk etc., (12)

where k is a cell index that increases downward. MOM6 then provides particular space and time discretiza-
tions of accelerations from the local time derivative, Coriolis, nonlinear vorticity, remapping, pressure, friction,
boundaries. We are not concerned here with details for how the terms are discretized. Rather, we articulate the
diagnostic terms required to close the velocity budget over a grid cell, and to identify where further diagnostics
need to be coded.

Table 1 summarizes the layerwise momentum equation diagnostics. For example, for each layer-k we can
diagnose the discrete zonal and meridional momentum budgets according to

dudt= CAu+PFu+u_BT_accel+du_dt_visc+diffu+remapping(u) (13a)

dvdt= CAv+PFv+v_BT_accel+dv_dt_visc+diffv+remapping(v). (13b)

The remapping terms correspond to the w (ṡ)∂z u term in equation (1). They must be diagnosed offline as the
residual of the other terms

remapping(u) = dudt−CAu−PFu−u_BT_accel−du_dt_visc−diffu (14a)

remapping(v) = dvdt−CAv−PFv−v_BT_accel−dv_dt_visc−diffv. (14b)

Relying on offline residual diagnostics is an unsatisfying situation since we ideally want an online diagnostic for
each term. Yet we do not understand the MOM6 remapping algorithm sufficiently to compute that diagnostic
online and so have settled for an offline residual calculation.3

3 Diagnosing terms in the depth-averaged velocity equation

As part of its barotropic time stepping scheme, MOM6 time steps the depth-averaged velocity

u =
∑

k hk uk∑
k hk

=∑
k

(hk /D)uk . (15)

For the Boussinesq version of MOM6, hk is the thickness (in meters) of layer k and

D =∑
k

hk = H(x, y)+η(x, y, t ) (16)

is the total layer thickness from the ocean bottom at z = −H(x, y) to the ocean surface at z = η(x, y, t ). For the
non-Boussinesq version of MOM6, hk is the mass per horizontal area of a grid cell and D is the total column
mass per area (i.e., the bottom pressure minus the applied surface pressure). Our goal is to diagnose terms
contributing to the time tendency ∂t u.

3There is an online diagnostic for the tracer remapping term in MOM6. Nonetheless, the tracer and velocity equation algorithms are
distinct, thus making the remapping diagnostics for the tracer equation insufficient to render a diagnostic for the velocity remapping.
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MOM6 VELOCITY EQUATION DIAGNOSTICS
TERM NAME DIAGNOSTIC NAME NOTE

(∂u/∂t )s local time derivative dudt, dvdt
(∂ubt /∂t )s barotropic tendency terms ubt_dt, vbt_dt
−[( f +ζ)/h]ẑ ∧ (h u) linear + nonlinear Coriolis CAu, CAv
−∇s K + gradient of kinetic energy
−[ζ/h]ẑ ∧ (h u) nonlinear Coriolis rvxv, rvxu
−∇s K gradient of kinetic energy gKEu, gKEv
−[ f /h]ẑ ∧ (h u) linear Coriolis − diagnose offline from other terms

w (ṡ) ∂u/∂z remapping acceleration − inferred offline from other terms
−[
ρ−1∇s p +∇sΦ

]
pressure acceleration PFu, PFv
barotropic acceleration u_BT_accel, v_BT_accel contribution from barotropic solver step

F (horz friction) horizontal friction diffu, diffv

F (vert friction) acceleration from vertical friction du_dt_visc, dv_dt_visc
+ρ−1τ(bound, top) + acceleration from wind stress
+ρ−1τ(bound, bottom) + acceleration from bottom stress

ρ−1τ(bound, top) surface wind stress taux, tauy units of diagnostics are N m−2

ρ−1τ(bound, bottom) bottom boundary stress taux_bot, tauy_bot units of diagnostics are N m−2

F (vert friction) vertical friction − diagnose offline from above terms

Table 1: Table of MOM6 velocity equation diagnostic terms. All model diagnosed terms have units of
m s−2 unless otherwise noted. The barotropic term, which comes from the barotropic time stepping step
in MOM6, is required to close the momentum budget. More details on MOM6 diagnostics can be found on
mom6.readthedocs.io/en/dev-gfdl/api/generated/pages/Diagnostics.html

3.1 Diagnostic approach

There are two general approaches to diagnosing terms contributing to ∂t u. The first approach implements the
online diagnostics directly within the MOM6 barotropic time stepping algorithm. However, we do not under-
stand the MOM6 barotropic algorithm sufficiently to be confident in our online diagnostics coded within the
algorithm. We thus pursued the following approach, in which we vertically average the layerwise diagnostics
from Section 2. An example of the depth average zonal budget is provided in Figure 1, with additional tests of the
momentum budgets given in Section A.

3.2 Concerning the time tendency diagnostic

There is one subtlety concerning the ∂t u diagnostic. Namely, the product rule decomposes the time derivative
of the depth averaged velocity into two terms 4

∂u

∂t
= ∂

∂t

[∑
k

(hk /D)uk

]
=

[∑
k
∂t (hk /D)uk +

∑
k

(hk /D)∂t uk

]
. (17)

The second term on the RHS is the vertical integral of each contribution to ∂t uk , with the diagnostics listed in
Table 1. Furthermore, MOM6 has online diagnostics to perform the fractional-thickness weighting of the RHS
terms in equation (17), with these diagnostics listed in Table 2.

However, the first term on the RHS of equation (17) arises from time changes to the relative thickness of a
layer, ∂t (hk /D), as multiplied by the layer velocity, and this term is not readily diagnosed online in MOM6. So to
diagnose

∑
k ∂t (hk /D)uk , we pursue an indirect method to obtain this term by diagnosing the left hand side of

4Hemant: do we compute the fractional thickness with H(x, y) as the static bottom depth, or as D(x, y, t ) that includes the time-
dependent free surface?
All online thickness-weighted momentum diagnostics use time-varying total depth D .
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Figure 1: Depth-averaged zonal momentum budget terms (Table 2) from a 1/4◦ global coupled MOM6 simula-
tion (fields averaged over 5 years). Note the dominance of geostrophy throughout most of the ocean, in which
the Coriolis and pressure gradient terms compensate. There is no online diagnostic for the vertical remapping
term (lower right panel) in MOM6. Therefore, this term is diagnosed offline as the residual remapping(u) =
hf_dudt_2d−hf_CAu_2d−hf_PFu_2d−hf_u_BT_accel_2d−hf_diffu_2d−hf_du_dt_visc_2d.

equation (17) according to
∂u

∂t
≈ u(τ+∆τ)−u(τ)

∆τ
, (18)

which requires diagnostic information about both the updated and prior values for the depth-averaged velocity,
u. This time derivative is diagnosed online and saved in

ubt_dt= ∂t u and vbt_dt= ∂t v . (19)

These diagnosed time tendencies allow us to then perform the offline diagnostic calculation∑
k
∂t (hk /D)uk = u(τ+∆τ)−u(τ)

∆τ
−∑

k
(hk /D)∂t uk (20a)∑

k
∂t (hk /D)uk = ubt_dt−hf_dudt_2d (20b)∑

k
∂t (hk /D) vk = vbt_dt−hf_dvdt_2d. (20c)
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In Figure 2, we show the left hand side of the zonal equation (20b) as well as the two terms on the RHS.

Figure 2: Maps for the terms in equation (20b), with the bottom right panel diagnosed as the difference between
the top row. Upper left panel: barotropic velocity tendency; upper right panel: depth averaged velocity tendency;
lower left panel: difference. These terms were computed from a 1/4◦ global coupled MOM6 simulation (fields
averaged over 5 years). All fields are spatially smoothed using a Gaussian filter kernel of radius 1◦.

4 A general discussion of vorticity budgets

Analysis of the vorticity budget offers useful physical insights into ocean fluid mechanics. For example, theories
for the large-scale gyre circulation are based on a study of vorticity. For our purposes here, we are not interested
in the vorticity budget for each grid cell in the vertical. Rather, we wish to study budgets for vorticity of a vertical
column from the ocean surface to the ocean bottom. This goal can be satisfied in more than one manner, with
the following considered here.

1. DEPTH-AVERAGED VORTICITY EQUATION: This budget is obtained by computing the vorticity for each grid
cell through taking the curl of the layerwise velocity equation (1). Then, the layerwise vorticity budget is
vertically averaged to obtain the depth-averaged vorticity budget.

2. VORTICITY OF THE DEPTH-AVERAGED FLOW: This budget is based on taking the curl of the depth-averaged
velocity equation derived from equation (1), which then render terms contributing to the vorticity of the
depth-averaged flow.

3. VORTICITY OF THE DEPTH-INTEGRATED FLOW: Here we vertically integrate the velocity equation (1) to com-
pute the budget of depth-integrated flow, and then take the curl to obtain the vorticity budget for the
depth-integrated flow.

In the following subsections, we derive the vorticity budget using each of the above approaches and discuss the
associated advantages and limitations. We then present the diagnostic approach taken in MOM6.
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MOM6 THICKNESS-WEIGHTED VELOCITY EQUATION DIAGNOSTICS
TERM NAME DIAGNOSTIC NAME

(h/D)(∂u/∂t )s Velocity tendency hf_dudt, hf_dvdt∑
k

(hk /D)(∂uk /∂t )s Depth mean of velocity tendency hf_dudt_2d, hf_dvdt_2d

−(h/D)
[
[( f +ζ)/h]ẑ ∧ (h u)+∇s K

]
Coriolis + KE gradient hf_CAu, hf_CAv

−
∑

k

(hk /D)
[
[( f +ζk )/hk ]ẑ ∧ (hk uk )+∇s Kk

]
Depth mean of Coriolis + KE gradient hf_CAu_2d, hf_CAv_2d

−
∑

k

hk
[
[( f +ζk )/hk ]ẑ ∧ (hk uk )+∇s Kk

]
Depth integral of Coriolis + KE gradient intz_CAu_2d, intz_CAv_2d

−(h/D)[ζ/h]ẑ ∧ (h u) Nonlinear Coriolis hf_rvxv, hf_rvxu

−
∑

k

(hk /D)[ζk /hk ]ẑ ∧ (hk uk ) Depth mean of nonlinear Coriolis hf_rvxv_2d, hf_rvxu_2d

−
∑

k

hk [ζk /hk ]ẑ ∧ (hk uk ) Depth integral of nonlinear Coriolis intz_rvxv_2d, intz_rvxu_2d

−(h/D)∇s K KE gradient hf_gKEu, hf_gKEv

−
∑

k

(hk /D)∇s Kk Depth mean of KE gradient hf_gKEu_2d, hf_gKEv_2d

−
∑

k

hk∇s Kk Depth integral of KE gradient intz_gKEu_2d, intz_gKEv_2d

−(h/D)
[
ρ−1∇s p +∇sΦ

]
Pressure gradient hf_PFu, hf_PFv

−
∑

k

(hk /D)
[
ρ−1∇s pk +∇sΦk

]
Depth mean of pressure gradient hf_PFu_2d, hf_PFv_2d

−
∑

k

hk
[
ρ−1∇s pk +∇sΦk

]
Depth integral of pressure gradient intz_PFu_2d, intz_PFv_2d

Barotropic acceleration hf_u_BT_accel, hf_v_BT_accel
Depth mean of barotropic accel. hf_u_BT_accel_2d,

hf_v_BT_accel_2d
Depth integral of barotropic accel. intz_u_BT_accel_2d,

intz_v_BT_accel_2d

(h/D)F (horz friction) Horizontal diffusion hf_diffu, hf_diffv∑
k

(hk /D)F (horz friction) Depth mean of horizontal friction hf_diffu_2d, hf_diffv_2d∑
k

hk F (horz friction) Depth integral of horizontal friction intz_diffu_2d, intz_diffv_2d

(h/D)
[

F (vert friction) +ρ−1(τ(wind) +τ(bottom))
]

Acceleration due to vertical friction hf_du_dt_visc, hf_dv_dt_visc

+ wind stress + bottom stress∑
k

(hk /D)
[

F (vert friction) +ρ−1(τ(wind) +τ(bottom))
]

Depth mean acceleration due to hf_du_dt_visc_2d,

vertical friction + wind stress + bottom stress hf_dv_dt_visc_2d

Table 2: Table of MOM6 velocity equation diagnostic terms multiplied by fractional layer thicknesses (hk /D)
in units of m s−2 as well as when multiplied by the layer thicknesses (hk ) in units of m2 s−2. The total column
thickness is given by D = ∑

k hk , which is time dependent due to movement of the free surface. The sum of all
terms with barotropic acceleration terms is required to close the momentum budget. Note that 3D diagnostics
are not available for posting in the current MOM6 version, as we see no physical motivation to look at the 3D
terms. Rather, they are intermediate terms needed for computing the depth integral. We recommend saving
only the depth integrated 2D terms, which have been implemented in MOM6. Nevertheless, the code for posting
3D diagnostics can be found in relevant Fortran files in MOM6 source code as surrounded by comments. For
those wishing to save these 3D diagnostics, the comments will need to be removed.
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4.1 Depth-averaged vorticity equation

To derive the depth-averaged vorticity budget, we start with the continuous velocity equation (1) written in an
abbreviated form and using the Boussinesq approximation

∂t u =− f ẑ∧u−∇s(p/ρo +Φ)+ (1/ρ0)∂zτ+a+b (21a)

∂zτ= ρ0 F (vert frict) +δ(z −η)τ(top) −δ(z +H)τ(bot) (21b)

a =−ζ ẑ∧u−∇sK −w (ṡ)∂z u (21c)

b = F (horz frict) (21d)

ζ= ẑ · (∇s ∧u) (21e)

δ(z) = Dirac delta with dimensions L−1. (21f)

The vorticity equation is derived by taking ẑ ·∇s∧ of the velocity equation (21a), with a z-coordinate version given
by

∂tζ=−v β+ f ∂z w + 1

ρo
∇∧∂zτ+∇∧a+∇∧b, (22)

where
β= ∂y f (23)

is the meridional derivative of the planetary vorticity. Further, we can vertically integrate the vorticity equation
(22) and divide by the ocean depth

D(x, y, t ) = H(x, y)+η(x, y, t ) (24)

to obtain the depth-averaged vorticity budget

〈∂tζ〉 =−β〈v〉+ f

D

(
w (top) −w (bot))+ 1

Dρo
∇∧ (

τ(top) −τ(bot))+〈∇∧a〉+〈∇∧b〉, (25)

where

〈m〉 = 1

D

∫ η

−H
m dz. (26)

Further, by applying time-mean (indicated with overbars) and rearranging leads to the time and depth averaged
vorticity budget

β〈v〉 = f

D

(
w (top) −w (bot)

)+ 1

Dρo
∇∧ (

τ(top) −τ(bot)
)+〈∇∧a〉+〈∇∧b〉−〈∂tζ〉. (27)

The vorticity tendency is typically much smaller than the other terms when taking a sufficiently long time mean.
As seen in equation (27), the depth-averaged meridional flow is affected by several factors. It is required to

diagnose individual terms from a model output to assess the relative importance of these terms. However, it is
not feasible to use this approach with MOM6 output because diagnostics for terms from depth-averaged vorticity
budget are not available. Also, the vertical velocities at the ocean top and bottom are not readily available.

4.2 Vorticity of the depth-averaged flow

Another method to derive vorticity budget is to take the curl of the depth-averaged momentum equation. This
approach results in slightly different budget terms than obtained in the method above because depth-averaged
vorticity differs from the vorticity of the depth-averaged flow in the presence of variable topography. We first
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derive the vorticity equation for the depth-averaged flow and we further discuss the key differences between the
approaches. Using equation (21a), the depth-averaged momentum equation is given by

〈∂t u〉 =− f ẑ∧
(

1

D

∫ η

−H
udz

)
− 1

Dρo

∫ η

−H
∇p dz + 1

Dρo

(
τ(top) −τ(bot))+〈a〉+〈b〉 (28)

Since we have taken the depth integral, this equation holds whether in z-coordinates or generalized vertical
coordinates, with the only distinction being the specific form of the pressure gradient term and the nonlinear
term. We now take the curl of equation (28) to obtain the vorticity equation of the depth-averaged flow

∇∧〈∂t u〉 =−∇∧
[

f ẑ∧
(

1

D

∫ η

−H
udz

)]
−∇∧

[
1

Dρo

∫ η

−H
∇p dz

]
+∇∧

[
1

Dρo

(
τ(top) −τ(bot))]+∇∧〈a〉+∇∧〈b〉. (29)

With some algebra (note that the Coriolis term is expanded into the first three terms on the RHS below; see details
in Section 4.3), the equation can be written

∇∧〈∂t u〉 =−β〈v〉+ f
〈u〉 ·∇D

D
+ f

D

(
−Qm

ρo
+∂tη

)
− 1

ρo
∇∧〈∇p〉+∇∧

[
1

Dρo

(
τ(top) −τ(bot))]+∇∧〈a〉+∇∧〈b〉. (30)

Here, Qm is the mass flux into the ocean on the surface. Application of the time mean operator leads to

β〈v〉 = f
〈u〉 ·∇D

D
− 1

ρo
∇∧〈∇p〉− f

D

Qm

ρo
+ f

D
∂tη−∇∧〈∂t u〉+∇∧

[
1

Dρo

(
τ(top) −τ(bot)

)]+∇∧〈a〉+∇∧〈b〉. (31)

There are some key differences between the vorticity equations (31) and (27). In the depth-averaged vorticity
equation (27), there is no contribution from lateral pressure gradients but the vertical velocities at boundaries
appear in the budget. On the other hand, in vorticity equation of the depth-averaged flow (31), the curl of the
pressure gradient term does not vanish due to the presence of variable topography and free surface undulations,
and there are no vertical velocity terms associated with vortex stretching. The remaining terms also possess some
differences due to the different mathematical formulation.

The depth averaged vorticity equation (27) is a natural approach to a two-dimensional vorticity analysis.
However, we do not compute a layerwise vorticity budget in MOM6 so that diagnosing this budget is not con-
venient. Rather, the terms appearing in the vorticity equation of the depth-averaged flow (31) are more readily
diagnosed. But when working with this budget we must be aware of some limitations. In particular, the vorticity
equation for the depth-averaged velocity (31) contains the JEBAR term (joint effect of baroclinicity and relief),
which is the second term on the RHS of equation (31)

JEBAR =− 1

ρo
∇∧〈∇p〉. (32)

As detailed in (Mertz and Wright, 1992), JEBAR is a "correction" to the vortex-stretching arising with variable
topography, and JEBAR does not represent any physical process. Furthermore, the JEBAR term is expected to be
opposite in sign but of similar magnitude to the first term on the RHS in equation (31). Thus, these two terms
compensate for each other. Correspondingly, it can be difficult to accurately diagnose the JEBAR term, which
can lead to misleading interpretations (Mertz and Wright, 1992; Cane et al., 1998). For this reason it may be more
appropriate to treat the first two terms on the RHS in equation (31) as a single term for comparison against other
terms in the budget.

4.3 Vorticity of the depth-integrated flow

Another approach for vorticity budget analysis is to study the vorticity of the depth-integrated velocity. This
approach offers a middle ground between the depth averaged vorticity and the vorticity of the depth averaged
velocity. In particular, there is no JEBAR term in this approach.
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To derive the vorticity budget of the depth-integrated flow, we first vertically integrate the momentum equa-
tion (21a) from the ocean bottom, z =−H(x, y), to the sea surface, z = η(x, y, t )),∫ η

−H
∂t udz =− f ẑ∧

∫ η

−H
udz − 1

ρo

∫ η

−H
∇p dz + τ(top) −τ(bot)

ρo
+

∫ η

−H
adz +

∫ η

−H
bdz. (33)

We now introduce the shorthand

Ut =
∫ η

−H
∂t udz and A =

∫ η

−H
adz and B =

∫ η

−H
bdz, (34)

and make use of Leibniz’s rule on the pressure gradient term to render

Ut =− f ẑ∧
∫ η

−H
udz − 1

ρo
∇

[∫ η

−H
p dz

]
+p(top)∇η+p(bot)∇H + τ(top) −τ(bot)

ρo
+A +B. (35)

Here, p(top) and p(bot) are pressures at the surface and bottom of the ocean, and the terms p(top)∇η+p(bot)∇H are
pressure form stresses at the ocean surface and ocean bottom. We now take the curl of this equation and obtain

∇∧Ut =−∇∧
(

f ẑ∧
∫ η

−H
udz

)
− 1

ρo
∇∧

(
∇

∫ η

−H
p dz −p(top)∇η−p(bot)∇H

)
+∇∧ τ(top) −τ(bot)

ρo
+∇∧A +∇∧B,

(36a)

=−β
∫ η

−H
v dz − f ∇·

∫ η

−H
udz + J (p(bot), H)

ρo
+ J (p(top),η)

ρo
+∇∧ τ(top) −τ(bot)

ρ0
+∇∧A +∇∧B, (36b)

where we split the curl of the linear Coriolis term into the first two terms on the RHS. We can further massage the
second term on the RHS by making use of volume conservation for a vertical column of Boussinesq fluid to write

∇·
∫ η

−H
udz = Qm

ρo
−∂tη, (37)

which then leads to the vorticity budget for the depth-integrated flow

β

∫ η

−H
v dz = J (p(bot), H)

ρo
+ J (p(top),η)

ρo
− f

Qm

ρo
+ f ∂tη−∇∧Ut +∇∧ τ(top) −τ(bot)

ρ0
+∇∧A +∇∧B. (38)

Note that many climate models impose a uniform pressure at the ocean surface so that

J (p(top),η) = 0, (39)

which leads to the time averaged balance

β

∫ η

−H
v dz = J (p(bot), H)

ρo
− f

Qm

ρo
+ f ∂tη−∇∧Ut +∇∧ τ(top) −τ(bot)

ρ0
+∇∧A +∇∧B. (40)

As mentioned earlier, an advantage of using the formulation (40) (vorticity of the depth integrated flow)
rather than equation (31) (vorticity of the depth averaged flow) is that JEBAR term does not appear in equatio
(40). Instead, the bottom pressure torque is present

BPT = J (p(bot), H)

ρo
. (41)

If the bottom flow is geostrophic, then this term is equal to the vertical vortex stretching due to geostrophic flow
at the ocean bottom. This approach is found to be helpful in understanding the role of mesoscale eddies and
topography in the North Atlantic Ocean (see e.g. Hughes and De Cuevas, 2001; Yeager, 2015). We mainly focus on
this formulation in the following discussion.
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5 Diagnosing vorticity budget terms in MOM6

MOM6 is equipped with online diagnostics sufficient for an offline computation of individual terms in the vortic-
ity equations (40) and (31). We do so by making use of the online depth-integrated and depth-averaged velocity
budget diagnostics in MOM6 as listed in Table 2. We then take the curl of these terms offline to obtain the corre-
sponding vorticity budget terms. As the model does not fully manifest the continuum identities, such as Leibniz’s
rule, it is useful to work directly with the model velocity diagnostic rather than the massaged forms developed in
the continuum. Details are shown in Table 3.

Term Relevant Diagnostic Calculations∫ η
−H v dz vmo_2d / (ρo∆x), where ∆x and ρo are the zonal grid spacing and reference density

Qm wfo or PRCmE
∂tη compute using SSH snapshots at start and end times of time-interval chosen for averaging
∇∧Ut ∂x [D ×hf_dvdt_2d]−∂y [D ×hf_dudt_2d]
∇∧τs ∂x

[
tauy

]−∂y [taux]
∇∧τb ∂x

[
tauy_bot

]−∂y [taux_bot]
∇∧A ∂x

[
intz_rvxu_2d+intz_gKEv_2d

]−∂y
[
intz_rvxv_2d+intz_gKEu_2d

]
+ vertical remap contri.

∇∧B ∂x [intz_diffv_2d]−∂y [intz_diffu_2d]

Table 3: Method for the computations of vorticity budget terms using depth-integrated momentum budget di-
agnostics. The contribution from remapping in ∇∧A can be computed as discussed in momentum budget
diagnostics. Moreover, terms in equation (31) can be computed using depth-averaged momentum budget terms.

Diagnosis of the bottom pressure torque (BPT) requires some care since the model does not satisfy a discrete
version of Leibniz’s rule. From the development in Section 4.3, we write

J (p(bot), H)

ρo
=−∇∧

[
f ẑ∧

∫ η

−H
udz + 1

ρo

∫ η

−H
∇p dz

]
+β

∫ η

−H
v dz + f

Qm

ρo
− f ∂tη, (42)

with rearrangement leading to the diagnostic equation

J (p(bot), H)

ρo
= ∂x

[
intz_CAv_2d−intz_rvxu_2d−intz_gKEv_2d

]
− ∂y

[
intz_CAu_2d−intz_rvxv_2d−intz_gKEu_2d

]
+ ∂x [intz_PFv_2d+intz_v_BT_accel_2d]−∂y [intz_PFu_2d+intz_u_BT_accel_2d]

+ β

ρo∆x
×vmo_2d+ f

ρo
×wfo− f ∂tη. (43)

This approach was found to be most suitable because the terms on the RHS in the first three lines in equation (43)
can be unrealistically large. In general, we expect a significant cancellation between the zonal and meridional
gradients when we compute the curl of planetary vorticity advection term, and we expect to obtainβ×V (see first
two terms on the RHS in equation (36b)). A similar situation is expected in the curl of depth-integrated pressure
gradient term. However, this expectation does not seem to follow in individual curl operations in equation (43),
but the cancellation happens when we take the sum of the curls of Coriolis advection and pressure gradient terms
(see Figure 3). This behavior could be related to the numerical handling of the momentum terms in MOM6 and
it requires further analysis. Thus, we opt to use relation (43) to compute the BPT.

In Figure 4 we show the vorticity budget terms from equation (40). The largest terms appear to be the BPT
and curl of the depth-integrated nonlinear advection (∇×A ). These two terms largely cancel and the net is
very close to βV . We compare these MOM6 results with those from a 2 km simulation with the terrain-following
model CROCO (Corre et al., 2020). We are encouraged with the MOM6 diagnostic since the patterns largely agree
(compare figures 4 and 5) even though the diagnostic and prognostic methods are very different.
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Figure 3: Curl of depth-integrated Coriolis advection term (left panel), curl of depth-integrated pressure gradient
term (middle panel), and the sum of the two fields (right panel) using a 1/4◦ global coupled MOM6 simulation.
All fields (in m s−2) are spatially smoothed using a Gaussian filter kernel of radius 1◦.

Figure 4: The first two rows show the budget terms (units are in m s−2) from the vorticity equation (40) using a
1/4◦ global MOM6 simulation (fields averaged over 5 years). The computation details for each term are given in
Table 3. In the third row, the βV diagnostic in the bottom left panel is computed directly from model output. It
is compared against the sum of all terms in the first two rows (middle bottom panel) with the difference between
the two more than 10 orders of magnitude smaller (bottom right panel). All fields are spatially smoothed using a
Gaussian filter kernel of radius 1◦.
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Figure 5: Vorticity budget terms from 2 km resolution CROCO model simulation (Corre et al., 2020). All fields are
spatially smoothed using a kernel of radius 1◦.

A Examples from a hierarchy of channel models

In developing the online diagnostics and offline scripts, we found it useful to examine results from the following
hierarchy of channel test cases. For each test we diagnose the terms using the model’s native vertical grid since
mapping to non-native vertical grids has yet to be coded for the velocity diagnostics.5

1. SINGLE SHALLOW WATER LAYER DRIVEN BY WIND: This adiabatic and single layer experiment includes bot-
tom friction and bottom topography and is driven by wind. There is no vertical remapping so that the
dia-surface velocity vanishes, w (ṡ) = 0. Most of the other terms in the equation of motion are present, thus
allowing us to locate them in the code and ensure that this very simple test case balances.

2. TWO-LAYER WIND-DRIVEN SHALLOW WATER: This configuration is also adiabatic so that w (ṡ) = 0 and there
is no contribution from vertical remapping. With two layers encounter diagnostics in the presence of a
barotropic/baroclinic time stepping split. This test revealed many early problems with the diagnostics
since the time splitting algorithm in MOM6 is rather tricky.

3. CONTINUOUSLY STRATIFIED z∗: This configuration is identical to the above and yet it uses the continuously
stratified z∗ vertical coordinate with a full suite of horizontal and vertical friction operators. In this case

5Tracer diagnostics have been enabled on native and remapped grids, but that work has not been done for velocity diagnostics.
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w (ṡ) 6= 0 so we need to write analysis code to diagnose the associated contribution to the velocity equation.
This test includes all terms in the velocity equation.

4. CONTINUOUSLY STRATIFIED ρ2000: This configuration follows the previous one yet uses a continuously
stratified ρ2000 vertical coordinate. Ideally this test should reveal no new issues relative to the z∗ case,
but it is important to run this test to be sure.

A.1 Two-layer shallow water model budgets

We here exhibit terms from the velocity equation (1) in the two-layer shallow water zonally re-entrant channel
forced with a zonally uniform zonal wind stress. As expected, the dominant balance is geostrophic as seen in
Figure 6. The terms in Table 1 completely close the velocity budget and the residual is just computational round-
off. Note that the sum of barotropic acceleration and pressure acceleration terms is plotted in pressure force
acceleration panels in Figure 6.

In Figure 7, the barotropic and depth averaged velocity tendency terms are compared. These terms are largely
equal (top two rows) and the small difference is due to the derivative of the layer thickness divided by the total
depth (see equation 20b).

A.2 Budgets in continuously stratified z* simulation

In Figure 9, depth-averaged momentum budget terms are shown from a continuously stratified simulation that
was forced with steady zonal wind stress and surface heat and freshwater fluxes. Similar to shallow water runs,
the primary balance is between the pressure gradient and Coriolis terms. Other terms are roughly an order of
magnitude smaller. The residual is largest over topography, but it is tiny compared to the other individual terms.
Vorticity budget terms (31) are shown in Figure 10.
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Note that the colorbar range is different in different panels (units are in m s−2).
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